Том 26. Мечта об идеальной карте. Картография и математика — страница 25 из 28



Карта Европы и Средиземного моря из «Каталанского атласа» 1375 года. На иллюстрации представлена копия, выполненная в XIX веке.

* * *



Оригинальная карта Меркатора 1569 года.


В статье Джерома Сакса «Любопытная смесь карт, дат и имен» (A Curious Mixture of Maps, Dates, and Names, 1987) отмечается, что хотя в математическом уравнении проекции Меркатора используется логарифм, Джон Непер опубликовал свой труд о логарифмах лишь в начале XVII века. Кроме того, чтобы вывести уравнения проекции Меркатора, требовалось использовать методы математического анализа и дифференциальной геометрии, однако Ньютон и Лейбниц родились спустя 50 лет после смерти Меркатора, а Гаусс создал дифференциальную геометрию лишь в начале XIX века. Как же Меркатор составил свою карту в 1569 году? Видимо, не располагая методами, которые появились в математике позднее, он обладал обширными знаниями в области картографии и, как следствие, развитой интуицией.

Методы Меркатора были чисто практическими и основывались на огромных таблицах с данными. При этом он не оставил никаких технических описаний процесса построения карты и соответствующих навигационных таблиц и тем более не создал практического руководства по использованию его карты для навигации. Возможно, по этой причине, а также потому, что мореплаватели считали Меркатора представителем чуждого им мира ученых, эта карта обрела широкую популярность лишь 300 лет спустя. До этого карта Меркатора использовалась считанное число раз: так, друг Меркатора, картограф Абрахам Ортелий, включил в свой атлас «Зрелище шара земного» (Teatrum orbius terrarum, 1570) восемь карт, выполненных в проекции Меркатора.

Математическое описание этой проекции дал кембриджский математик Эдвард Райт (1561–1615). В книге «Ошибки в навигации, обнаруженные и исправленные» (1599, в 1610 году было выпущено дополненное издание) он не только привел новые навигационные таблицы и инструкции по определению фиксированных румбов на картах, составленных в проекции Меркатора, но и объяснил построение подобных карт. Он представлял сферическую модель Земли как полый шар, заключенный внутри цилиндра, касающегося шара на экваторе. Затем в этот шар закачивают воздух так, что он всё больше соприкасается с поверхностью цилиндра. Точки соприкосновения шара и цилиндра являются проекциями точек земной сферы.

Проекция Меркатора распространялась довольно медленно. Голландский картограф Петер Планциус использовал ее в 1594 году при составлении навигационных карт, а Иодокус Хондиус — при построении карты «Изображение всего круга земного» (Typus totus orbis terrarum, 1597) и других. И лишь в 1646–1647 годах в этой проекции Робертом Дадли был создан первый в истории морской атлас.



Карта «Изображение всего шара земного» (Typus totus orbis terrarum, 1597), также известная как «карта рыцаря Христова» Йодокуса Хондиуса, выполненная в проекции Меркатора. В средней части карты вы можете видеть рыцаря Христова, который сражается с Грехом, Сладострастием, Дьяволом и Смертью. Кроме того, Мир подносит ему чашу с ядом вавилонской блудницы, которая иногда использовалась как символ католической церкви.

* * *

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ПРОЕКЦИИ МЕРКАТОРА

Чтобы оценить, на каком расстоянии от экватора должны изображаться параллели в проекции Меркатора, будем постепенно увеличивать широту, на которой мы будем применять соответствующий коэффициент масштаба. Если мы начнем отсчет с параллели широтой φ и будем откладывать небольшие интервалы длиной t, получим последовательность точек широтой t, 2t…., φt, φ , через которые будут проходить параллели. Так как искажение в направлении меридиана для широты α, как мы уже отмечали, должно равняться искажению вдоль параллели, равномуsec φ, то искажение вдоль вертикали в отмеченных нами точках будет равно sect, sec (2t), sec (φt), sec φ. Так как длина дуги сферы, заключенной между отмеченными точками, равна t, то высота, на которой будет проходить параллель широтой φ, будет равна:

t·sect + t·sec(2t) +… + t·sec(φt) + t·secφ.

Допустим, мы хотим оценить высоту, на которой будет проходить параллель широтой φ = 60°. Предположим, что выбранные интервалы имеют величину t = 10°. Так как sec 10° = 1,0154, sec 20° = 1,0642, sec 30° = 1,1547, sec 40° = 1,3055, sec 50° = 1,5557 и sec 60° = 2,0000, умножив эти числа на 10 и сложив полученные значения, получим 80,955. Иными словами, параллель широтой 60° должна будет проходить на высоте, на которой располагалась бы параллель широтой 80,955°, если бы параллели были равноудалены друг от друга.



Именно так рассуждал Эдвард Райт, можно предположить, что похожие рассуждения провел и Меркатор. Рассмотрим задачу в более современном виде. Для цилиндрической проекции, 30° в которой экватор является осью х, а параллель широтой φ — горизонтальной линией, проходящей на высоте у = h(φ), коэффициент масштаба (искажения) в направлении меридианов λ должен быть равен коэффициенту масштаба вдоль параллелей μ = 1/cos φ = sec φ. Получим:


Имеем

* * *

Вернемся к проекции Меркатора и напомним, что карта, выполненная в этой проекции, имеет следующие свойства.

1. Она имеет прямоугольную форму, так как выполнена в цилиндрической проекции.

2. Меридианы и параллели пересекаются под прямыми углами.

3. Карта выполнена в конформной проекции, которая не сохраняет расстояния, площади, геодезические линии и формы протяженных участков.

4. Искажения площадей, форм и расстояний вблизи экватора очень малы (в этой части карты используется реальный масштаб), но они значительно возрастают по мере приближения к полюсам, поэтому проекция Меркатора удобна для составления карт территорий, расположенных вблизи экватора.

5. Локсодромы, или линии румба, изображаются в виде прямых линий.



Сравнение локсодромы (линии румба) и ортодромы (линии наименьшего расстояния) между Рио-де-Жанейро и Сеулом на карте Меркатора.


С созданием этой карты мечта Меркатора исполнилась. Если мореплаватель хотел попасть из точки А в точку В, он должен был всего лишь провести на карте, выполненной в проекции Меркатора, прямую, соединяющую эти точки, и измерить румб, соответствующий этой прямой, после чего ему оставалось всего лишь точно соблюдать курс. Однако вы уже знаете, что локсодромы — это не ортодромы, и хотя они указывают простейший курс (нужно всего лишь выдерживать постоянный румб), путь вдоль локсодромы не является кратчайшим. Двигаться вдоль ортодромы сложнее, так как для этого необходимо постоянно менять румб. Мореплаватели и пилоты самолетов в конечном итоге нашли промежуточное решение этой проблемы. Чтобы попасть из пункта отправления в пункт назначения, нужно выполнить следующее.

1. Провести геодезическую линию (прямую) на карте, выполненной в центральной или азимутальной равнопромежуточной проекции с центром в пункте назначения.

2. Разбить геодезическую линию на фрагменты и определить тем самым последовательность стратегических точек.

3. Перенести эти точки на карту, выполненную в проекции Меркатора, и соединить их прямыми. Построенные прямые будут локсодромами и укажут румб, который нужно выдерживать в каждой из стратегических точек.



Метод приближения большого круга с помощью локсодром, который используется в навигации по карте Меркатора, а также, например, карты, выполненной в гномонической проекции.


Нет никаких сомнений в том, что проекция Меркатора была и остается лучшей для составления навигационных карт с момента своего появления в XVII веке. Эту проекцию используют Национальная служба по исследованию океана США (с 1910 года), Гидрографический институт Испании и многие другие авторитетные организации.

Проекция Меркатора играла огромную роль в эпоху морских путешествий. Она очень часто использовалась при составлении карт мира и была одной из самых популярных картографических проекций вплоть до начала XX века, хотя она и вносит очень большие искажения в областях, близких к полюсам. Сегодня на основе этой проекции изготавливаются настенные карты, карты в учебниках и атласах, в научно-популярных публикациях, в газетах и журналах. Американский картограф Джон Снайдер (1926–1997) из Геологической службы США, изучив различные атласы мира, опубликованные в США, Великобритании, Франции и Германии в XIX веке, определил, что чаще всего в них использовалась проекция Меркатора. Однако похожее исследование, проведенное в XX веке, показало, что начиная с 1940-х годов эта проекция практически перестала использоваться. Ей на смену пришли такие проекции, как гомолосинусоидальная проекция Гуда, тройная проекция Винкеля, проекция Робинсона, Eckert IV, проекция Ван дер Гринтена и другие.

* * *

ПУТЕШЕСТВИЕ ЧАРЛЬЗА ЛИНДБЕРГА

Американский авиатор Чарльз Линдберг (1902–1974) стал известен во всем мире как первый человек, перелетевший в одиночку Атлантический океан. В 1919 году богатый владелец нью-йоркского отеля предложил премию в 25 тысяч долларов пилоту, который первым совершит одиночный беспосадочный перелет из Нью-Йорка в Париж. Линдберг верил, что если у него будет подходящий самолет, он сможет выиграть приз, и убедил нескольких бизнесменов из Сент-Луиса спонсировать предприятие, включавшее постройку особого самолета «Дух Сент-Луиса» под руководством самого Линдберга.

20 мая 1927 года Линдберг отправился в полет с аэродрома на Лонг-Айленде, «взяв с собой четыре сэндвича, две фляжки с водой и 1700 литров бензина. Спустя 33,5 часа и 3610 миль (около 5800 км) он приземлился в Париже на глазах ожидавшей его стотысячной толпы. Линдберг, получивший прозвище Одинокий Орел, стал известен во всем мире. Свой полет он тщательно спланировал с помощью навигационных карт. Вот его слова: «…большую часть времени, когда строился самолет, я занимался навигацией и прокладывал курс будущего полета на картах. После того как я определил курс на картах, выполненных в гномонической проекции и проекции Меркатора, я вновь проверил весь путь между Нью-Йорком и Парижем по навигационным таблицам. Я начертил большой круг, соединявший Нью-Йорк и Париж. Чтобы следовать этим курсом, требовалось менять румб каждые 500 миль».