Аналогичный принцип перехода от диалектики одной отрасли знания к диалектике другой наблюдается и в науках о живой природе. Вначале рассматривается диалектика в биологии и генетике, а затем в естественных науках, изучающих человека (антропологии, физиологии высшей нервной деятельности, медицине). Анализ диалектики в этих, последних областях естествознания образует естественную основу для перехода к диалектике общественных процессов — диалектике биологического и социального. Такова внутренняя логика содержания третьего тома «Материалистической диалектики».
Часть первая. ДИАЛЕКТИКА В НАУКАХ О НЕЖИВОЙ ПРИРОДЕ
Глава I. ДИАЛЕКТИКА МАТЕМАТИЧЕСКОГО ПОЗНАНИЯ
1. Объект и предмет математики
Процесс отражения действительности математикой представляет собой яркий пример диалектики познания. Пожалуй, ни в одной другой науке нет столь парадоксального сочетания взаимоисключающих характеристик процесса познания, как в математике, где уживаются рядом интуитивная очевидность и логические доказательства, наглядность и крайняя отвлеченность, независимость от опыта и многообразные практические приложения. Эти особенности математики привлекают к ней пристальное внимание философов, чьи мнения о математике варьируются от признания ее идеалом науки вообще и образцом для подражания (Р. Декарт, Т. Гоббс, И. Кант) до полного отказа признать за нею какое-либо объективное значение (Д. Юм, Л. Виттгенштейн, Б. Рассел)[15].
Несмотря на большое число различных школ и направлений в современной буржуазной философии математики, в ней отсутствует сколько-нибудь убедительное объяснение процесса математического познания в целом. Абсолютизируя какую-либо одну из особенностей математического знания, они создают тем самым искаженное представление о целом. Лишь с позиций диалектического материализма, руководствуясь марксистско-ленинским пониманием познания как активного, творческого отражения объективного мира человеческим сознанием, можно создать целостное представление о диалектике математического познания во всей ее сложности и противоречивости и тем самым дать математике философское обоснование. Основной вопрос математики тесно связан с основным вопросом философии. Объекты исследования математики составляют определенные отношения в объективном мире, математические построения, которые могут быть очень удаленными от этого мира и создавать видимость независимости первых от второго. Этот мировоззренческий вопрос, разделяющий материализм и идеализм в философии математики, следует отличать от методологической проблемы о предмете математики, заключающейся в определении основного содержания математики как науки, т. е. системы средств, способов и результатов познания ею своего объекта.
Различение объекта и предмета математического познания носит принципиальный характер. Решение проблемы об объекте математики требует ответа на вопрос: является ли математическое знание отражением объективного мира, существующего до, вне и независимо от познающего субъекта, или же оно служит формой самопознания субъекта? Следовательно, вопрос об объекте математического познания представляет собой конкретизацию основного вопроса философии применительно к математике. Определение объекта математики должно быть дано в категориях диалектического материализма. Наоборот, решая вопрос о предмете математики, мы не выходим за пределы диалектики процесса познания, определение предмета математики дается не посредством философских категорий, а с помощью общенаучных или специальных математических понятий[16].
Объектом математического познания всегда были различные типы единства количественной и качественной определенности, бесконечного и конечного, непрерывного и прерывного, структурного многообразия мира и его элементов. Предмет ее меняется в зависимости от уровня развития самой математики, ее методов познания, развития смежных с математикой наук, общественно-исторической практики. Никакая система понятий, будучи исторически конкретной и вследствие этого неполной и ограниченной системой, не может абсолютно отобразить всего содержания соответствующего свойства объективного мира, хотя в процессе исторического развития науки происходит уточнение и углубление знаний, познаются все более глубокие и существенные черты этого содержания. Следовательно, на каждом данном этапе развития математики ее предмет находится в определенном соответствии с ее объектом, но не совпадает с ним.
Исторически и логически первичными свойствами объективного мира, которые стали изучаться математикой, были различные отношения меры — количественно определенного качества или качественно определенного количества, с которыми люди изначально сталкивались в практической деятельности[17]. Математика начинала с изучения конкретных систем объектов, поэтому «качественная окраска» исследуемых количественных отношений мешала разглядеть изоморфизм отношений различных предметных областей, понять эти отношения как частные проявления некоторой абстрактной и общей структуры. Так, структура группы как математического конструкта в предельно общей форме оставалась скрытой за многими частными законами композиции, свойствами подстановок на множествах, сложением и умножением чисел, преобразованиями векторов в пространстве. В XVII–XIX вв. лишь некоторые выдающиеся мыслители видели в математике не сумму отдельных дисциплин, а общую науку об отношениях[18]. Даже Гегель воспринимал математику как науку о величинах и числах, правда отмечая ее абстрактно-количественный характер как метафизическую ограниченность, свидетельство отрыва количества от качества. «…Математика природы, если она хочет быть достойной имени науки, по существу своему должна быть наукой о мерах»[19], — подчеркивал он.
Таким образом, предмет математики — это теоретический образ объекта, его абстрактное и идеализированное представление. Со временем в математике все большее значение приобретают исследования, непосредственно направленные на познание не внешнего мира, а на само математическое знание и методы его получения. Происходит как бы переход от «первичного» отражения к «вторичному». Поскольку в этом случае объектом исследования становится само исследование, естественно назвать этот уровень математического познания метаисследованием, а его объект — математическое знание — метаобъектом[20].
Примером метаисследований являются работы по основаниям математики, но в целом область метаисследований в современной математике гораздо шире и включает в себя значительную часть таких математических исследований, которые не имеют непосредственного соприкосновения с решением каких-либо прикладных задач. Предмет математики в таком случае оказывается частью ее метаобъекта.
Важность метаисследований в математике определяется тем, что «вторичное» отражение по существу есть дополнение и продолжение «первичного» отражения. Исследование знания есть одно из средств изучения того объективного содержания, которое отражено в нем. То же можно сказать и об изучении познавательных процедур. Зная какую-либо познавательную процедуру, можно найти вид знания, которое с ее помощью было получено, и на основании последнего определить объективный аналог этого знания[21]. Однако отметим еще раз, что метаисследование следует рассматривать как вспомогательный вид познания, подчиненный главной задаче — познанию объективного мира.
Метаисследование в таком понимании не только не совпадает, но прямо противоположно тому, что принято называть метаматематикой. Дело в том, что метаисследования относятся к идеальным, абстрактным объектам — понятиям, смыслам, суждениям, в то время как метаматематика имеет дело только с конкретными «объектами» вроде знаков какого-нибудь искусственного языка, значения которых в рамках метаматематического исследования не принимаются во внимание. Формальные системы, «представляющие» тот или иной раздел содержательной математики, изучаются в метаматематике как материальные объекты со структурой, подобно фигурам в геометрии, им можно приписывать только такие свойства и отношения, которые воспринимаются непосредственно. Объект метаматематики — это результат «двойного отрицания» первичного, объективно-реального объекта. Здесь происходит возврат к чувственному созерцанию изучаемых отношений, но уже между не «естественными», а искусственными объектами.
Однако в некоторых работах по философии математики отмечается, что основным объектом математического познания является не реальный объект, а метаобъект или даже «метаметаобъект». Гносеологическим источником этой ошибки является относительная независимость метаобъекта. Известно, что даже наиболее элементарные понятия математики абстрактны по своему содержанию. Поэтому при создании математических теорий приходится учитывать не столько содержательные, сколько формальные, логические, независимые от конкретного содержания отношения между понятиями. Известно, что уже на заре развития математики достоверность выводов определялась не содержательными, а формальными критериями, поскольку математика сама по себе не содержит критериев, позволяющих отличать утверждения, относящиеся к действительности, от утверждений, имеющих только математический смысл. Так, понятие существования в математике значительно отличается от понятия объективно-реального существования[22].
Эти обстоятельства и способствуют тому, что иногда в сознании некоторых математиков метаобьект получает статус самостоятельного существования, утрачивается представление о его вторичности, зависимости от объекта и субъекта, математические понятия начинают рассматриваться уже не как образ объективной реальности, а как сама эта реальность. В этом случае метаобъект вместо того, чтобы выполнять роль «оптического прибора», позволяющего лучше рассмотреть объект, становится как бы экраном, заслоняющим его от взоров исследователя[23]. Отсюда возникает иллюзия, что метаобъект есть не только главный, но и вообще единственный объект изучения, математика превращается из науки о свойствах объективного мира в науку о математическом знании и способах его получения, что в итоге приводит к субъективно-идеалистической трактовке ее объекта. Это можно проиллюстрировать на нескольких примерах историко-философского рассмотрения этой проблемы.
Так, известно, что Платон настолько абсолютизировал понятия математики, что превращал их в самостоятельные трансцендентные «идеи», вечные идеальные формы, знание о которых душа приобретает во время пребывания в потустороннем мире[24]. В этом случае основные понятия математики оказываются врожденными, не зависящими как от личного, так и от коллективного опыта людей, «открываются», а не «изобретаются». Последователи Платона абсолютизируют относительную независимость математического знания от эмпирического содержания. Объективность содержания понятий истолковывается в том смысле, что и они сами, а не только их прообразы существуют вне и независимо от сознания.
Математическое знание действительно обладает известной независимостью от эмпирического опыта, но эта независимость не абсолютна, она имеет свои границы[25]. Математика не является теорией, выведенной из априорного основания. Хотя ее основные понятия и невыводимы непосредственно из эмпирического опыта, а являются результатом творческой, конструктивной деятельности мышления, но мотивы и цели этой деятельности детерминированы факторами, находящимися в объективном мире.
Для идеалистического рационализма математика была знанием автономным, независимым от эмпирии и в то же время имевшим объективное значение. При этом полагалось, что применимость математики к наукам о природе свидетельствует о гармонии разума и бытия. Новые открытия в математике заставили сторонников рационализма отказаться от первоначальных упрощенных представлений об этой гармонии и искать возможности для установления более сложных ее форм. Когда было обнаружено, что относительно некоторой «математической реальности» можно построить несколько непротиворечивых, но несовместимых теорий, стало ясно, что в данном случае выбор между ними нельзя сделать на основе «разума». Тогда пришли к выводу, что этот вопрос должен решаться в «опыте».
Если в платонизме абсолютизировалась относительная самостоятельность понятийного компонента математического познания, то в кантовской философии математики абсолютизировалась сама «математическая деятельность». Так как «мы a priori, — писал И. Кант, — познаем о вещах лишь то, что вложено в них нами самими», — объекты, познаваемые нами посредством «априорного созерцания», суть продукты нашего собственного воображения[26]. Он считал, что в математике познание происходит путем «конструирования понятий». «…Конструировать понятие — значит показать a priori соответствующее ему созерцание», некоторый наглядный образ. Следовательно, в математическом познании мы рассматриваем не внешнюю реальность (материальную или, как считал Платон, идеальную), а результаты деятельности рассудка и воображения, раскрывающей содержание (эксплицирующей) «чистой интуиции пространства»[27].
То, что Кант стремился показать единство образного и дискурсивного (понятийного) моментов в математическом познании, подчеркивало важную роль в нем творческой, конструктивной деятельности субъекта, имело положительное значение. Однако при этом он истолковывал неконструктивные компоненты математического знания не как отражение внешнего мира, а как данные a priori, т. е. мистически. Архаичным выглядит и его стремление уложить все многообразное содержание математики в рамки «евклидовой интуиции» пространства, ограниченность которой обнаружилась уже с открытием неевклидовых геометрий. Но это было позже. А тогда, как справедливо заметил М. Бунге, «из всего солидного вклада Канта (в философию математики. — Авт.) его идея чистой интуиции оказалась наименее ценной, но, к сожалению, не наименее влиятельной»[28].
Действительно, попытка «вывести» математику из чистой интуиции, но уже не пространства, а времени была предпринята интуиционизмом — субъективно-идеалистическим течением современной буржуазной философии математики. Основатель его — Л. Э. П. Брауэр полагал, что в интуиции времени содержатся все элементы, необходимые и достаточные для построения натурального ряда чисел, а следовательно, и всех основных математических теорий. Но поскольку человек обладает интуицией только относительно небольших чисел, то в остальных случаях необходимо опираться не на интуитивную очевидность, а на критерий «конструктивности», согласно которому «реально существующими» в интуиционистской математике признавались только те объекты, которые можно было фактически построить.
В философском плане интуиционизм близок как к позитивизму, так и к более ранним формам субъективного и объективного идеализма: неоплатонизму, картезианству, кантианству. По существу это «математический операционализм». Абсолютизация им значения математической конструктивной (причем именно алгоритмической) деятельности приводит к недооценке объективного содержания математического знания. «С интуиционистской точки зрения математика является изучением определенных функций человеческого разума… она не выражает истину о внешнем мире»[29], — писал А. Гейтинг.
Платонизм и интуиционизм преувеличивают относительную самостоятельность математического знания, отрывая его либо от объективного мира (интуиционизм), либо от человеческого сознания (платонизм).
В противоположную крайность впадают представители метафизического материализма, выступающие в философии математики под флагом эмпиризма или номинализма. Эмпиризм признает единственным источником знания чувственный опыт, не допускает возможности знания о ненаблюдаемом. Номинализм не признает объективность общего, существование необходимых связей между сходными объектами, принадлежащими к некоторому классу. Следовательно, как эмпирики, так и номиналисты отрицают объективность сущности, поскольку она ненаблюдаема и обладает общим и необходимым характером. На этом основании они отказываются признать объективное содержание общих терминов и принимают их только в качестве «общих имен», подчеркивая тем самым, что они происходят из «ноуменов» (языка), а не из опыта.
Таким образом, если в идеалистической философии математики метаобъект служит единственным предметом изучения для математики, то в эмпиризме и номинализме он отбрасывается как «реальность», исследуемая в математическом познании, которое связывается непосредственно с чувственным опытом[30]. Однако если бы математическое знание было ограничено пределами непосредственно наблюдаемых, чувственно воспринимаемых объектов, их свойств и отношений, то в нем не могли бы содержаться такие математические объекты, которые в опыте вообще не встречаются, да и по своим свойствам не могут реально существовать. Вопреки эмпиризму математика не каталогизирует чувственный опыт, а ставит на место чувственно данного различия объектов многообразие абстрактных объектов, удовлетворяющее не требованиям непосредственной чувственной данности, а логической непротиворечивости и полноты.
«Математические» свойства (за редким исключением) не даны в чувственном опыте и поэтому скорее приписываются вещам, чем обнаруживаются в них[31]. Понятия математики, даже элементарные, как правило, не могут быть получены в результате абстрагирования от конкретно данного; для их создания нужны другие познавательные приемы[32]. К последним относятся прежде всего умозрительное конструирование, создание «конструктов», т. е. понятий, получаемых посредством замещения элементов некоторого структурного образа («гештальта»), заимствованного из имеющегося в наличии эмпирического (научного или обыденного) знания, идеализированными образами («идеалами») каких-либо эмпирических объектов или же их свойств и отношений.
Если в качестве источника «гештальтов» и «идеалов» принимают не эмпирическое знание, отражающее природные объекты, их свойства и отношения, а знание, полученное в результате исследования самого процесса познания и его результатов, выраженных на каком-либо естественном или искусственном языке, то полученные таким образом понятия будут уже не обычными конструктами, а «метаконструктами». В математическом знании имеются как конструкты, так и метаконструкты, поскольку математика занимается исследованием не только объекта, но и метаобъекта. Поскольку в силу общего характера математические понятия способны отображать не только форму объективного содержания, но и форму знания, то в математику входят и «формальные метаконструкты» — понятия, отображающие формальную общность языковых средств (математических, физических, биологических). Математика, таким образом, способна выполнить по отношению к естественнонаучному знанию функции формальной метатеории, подобно тому как теория объективной диалектики способна выполнять роль содержательной метатеории[33].
«Умозрительное» происхождение математических понятий не означает, что они суть «продукты чистого мышления». При создании конструктов «строительный материал» берется из уже имеющегося знания, но из него создаются новые сочетания, которых не было в наличном знании. Таковы понятия дифференциала и интеграла, мнимые и комплексные числа, бесконечно удаленные точки и прямые в проективной геометрии и т. п. Все понятия создаются людьми. Существенно, однако, то, что в содержании научных понятий определяющая роль принадлежит объективно истинному содержанию, а конструктивный элемент играет подчиненную роль. В содержании же художественных образов это соотношение может быть прямо противоположным.
Представители современного математического эмпиризма рассматривают математику уже не как эмпирическую, а как «метаэмпирическую» науку. Это позволяет существенно расширить круг математических понятий, обосновываемых «эмпирически» в этом смысле слова. Они утверждают, например, что «математика есть наука о формальных методах», т. е. исследует не содержание, а только форму математического знания, законы построения искусственного языка[34]. Но такой подход не позволяет решить вопроса об объективных основаниях математики, так как хотя язык и состоит из материальных элементов, но они созданы людьми и не существуют независимо от них. Современный эмпиризм игнорирует интерпретации формальных систем, т. е. абстрактные объекты.
Такой подход способствует распространению мнения об «информационной пустоте математики», о «конвенциональном характере» ее положений. В русле неоэмпиризма (или формализма) предпринимались попытки формального обоснования математики, которое должно было быть достигнуто без обращения к смысловой стороне математических выражений[35]. Таким образом, «живая» математика здесь подменялась мертвой схемой. Между тем математическому мышлению свойственна диалектика, ему в высшей степени присуща всесторонняя, универсальная гибкость понятий, гибкость, доходящая до тождества противоположностей[36], проистекающая из связи абстрактного понятийного и конкретно-образного содержания. Искусственные языки с их жестко фиксированной семантикой не в состоянии отразить это богатое содержание. Поэтому формальными средствами нельзя решить проблему обоснования математики. Математическому мышлению недостаточно логики формальной, ему нужна логика диалектическая.
2. Диалектика количественных и качественных отношений и математическое познание
На каждом историческом этапе развития математика, как и любая другая наука, представляет собой определенный конкретный и в известной степени фиксированный способ и результат познания своего объекта. Однако содержание знания об объекте определяется не только им самим, но и особенностями методов познания. Последние же зависят от целого ряда факторов — социальных, экономических, технических, от уровня развития смежных наук, от мировоззрения. Нередко изменение содержания математического знания и способов его получения истолковывается как изменение самого объекта науки. В этом случае объект отождествляется с метаобъектом и оказывается проекцией сложившихся к данному моменту представлений об объекте (как правило, неполных, относительных, ограниченных). «Недостатком такого принципа, — подчеркивает Г. Г. Шляхин, — является подмена реальной действительности ее теоретизированной частью»[37]. Между тем ни в какой момент развития математического познания его объект не исчерпывается имеющимися в наличии знаниями о нем. Абсолютизация познанного, как и абсолютизация еще не познанного, одинаково неприемлемы для диалектического мышления. Обе точки зрения неспособны объяснить процесс непрестанного развития математики, расширения математического знания.
В связи с тем, что на роль основного понятия математики в настоящее время выдвигается понятие структуры, некоторые авторы говорят об изменении не предмета, а объекта математического познания[38]. Этот факт истолковывается иногда также в том смысле, что современная математика исследует уже не количественную определенность материального мира, а его «структурный аспект». Так, И. Г. Федоров пишет: «Единственным объектом современной математики является структурный аспект материи…»[39] Другие авторы, желая сохранить понимание математики как науки о количественных отношениях и вместе с тем как-то учесть роль структуры в современном математическом познании, пытаются расширить содержание философской категории «количество», включив в нее понятие структуры[40]. Количественные связи при этом определяют не как отношения между величинами, а как любые структуры, которые сравнительно независимы от конкретного содержания соотносящихся сторон. Утверждают даже, что «изучаемые математикой отношения всегда являются количественными»[41]. в связи с этим принятое в диалектическом материализме понимание категории количества как единства числа и величины объявляется узким и устаревшим. Между тем в основе концепции, определяющей количество как единство числа и величины, лежит обобщение всего научного и практического опыта людей, и никакого другого научного смысла, на наш взгляд, эта категория не имеет[42].
Структура как философская категория имеет собственное содержание, в котором признак «безразличия» к природе элементов не является определяющим, о чем часто пишут сторонники «широкого» понимания категории количества[43].
На тесную связь категории структуры с категорией качества указывают авторы, специально исследовавшие категорию структуры в онтологическом плане. Так, В. И. Свидерский писал: «При анализе того, что является внутренним содержанием качества, легко убедиться, что последним должно выступать определенное единство соответствующих элементов и соответствующей структуры, создающих определенность, специфичность, целостность и устойчивость любого явления»[44]. Качество, будучи единством элементов и структуры, не тождественно ни структуре, ни элементам, взятым порознь. Структуре присущи и количественные и качественные характеристики, что, конечно, не может служить основанием для отождествления структуры с качественной или количественной определенностью. Существуют структуры различных качественных типов. Среди них особый тип представляют собой пространственные отношения.
Математика как наука об отношениях в объективном мире всегда исследовала не некое неопределенное «количество вообще», «чистое количество», а различные виды количественной определенности конкретного качественного типа. Ее объектом являются различные отношения меры, материал для которых математики черпают из природы, дополняя его «умственными конструкциями», предназначенными в конечном счете для раскрытия того содержания, которое заложено в исходных понятиях. Поскольку нет таких качеств, которые не имели бы количественной характеристики, и таких явлений, которые не подчинялись бы закону меры, постольку область применения математических методов к познанию природы принципиально не ограничена. Конечно, применение любого конкретного метода имеет границы. На каждом данном этапе развития научного знания существуют такие его виды, которые не поддаются исследованию средствами математики.
Математическое знание, как и всякое научное знание, глубоко диалектично, однако его диалектическая природа не всегда очевидна. Сам способ представления результатов математического познания, принятый в этой науке, в немалой степени способствовал распространению взгляда на математику как на «формальное», «внешнее» знание, не имеющее объективных оснований.
Пренебрежительное, а подчас и отрицательное отношение Гегеля к математике основывалось на господствовавшем в то время понимании математики как науки о величинах, о количестве вне связи с качеством, а также на отождествлении способа изложения математического содержания с действительным процессом его движения. Процессом доказывания в ней, отмечал Гегель, управляет как будто бы какая-то внешняя самому содержанию сила; исходный пункт доказательства никак не связывается при его выборе с искомым результатом. В процессе доказывания якобы совершенно произвольно принимаются одни и игнорируются другие допущения, причем невозможно установить, в силу какой необходимости все это делается[45]. Высокая оценка математики И. Кантом основана опять-таки на ошибочном понимании им природы математического знания, которое он считал примером «синтетического априорного знания» — единственного вида знания, которое, согласно Канту, сочетает объективную значимость с безусловной достоверностью, обладает общим и необходимым характером[46].
Характерные для современного позитивизма оценки математики как «информационно пустой», «онтологически нейтральной», «тавтологичной», «чисто вербального знания» также основаны на абсолютизации действительно присущего этой науке момента — неопределенности смыслового (семантического) содержания ряда ее фундаментальных терминов[47]. Между тем законы математики совместимы не с любой онтологической конструкцией. Ведь даже логика содержит некоторые «онтологические обязательства»[48], т. е. предполагает существование объектов с определенными свойствами.
В еще большей степени это присуще математике. Конечно, известная неопределенность в отношении конкретного вида объектов всегда остается, поскольку математика не различает между «фактическим» положением дел и возможными, но неосуществленными ситуациями. Она отвлекается от того обстоятельства, что возможности, совместимые логически, могут быть несовместимыми «физически», от того, что все возможности вообще не могут осуществиться. Если физика различает реальные и абстрактные возможности, то для математики в области возможного нет качественных градаций.
Эта особенность математики позволяет ей быть «наукой о бесконечном». Способность ее отображать, хотя и в абстрактной и односторонней форме, количественный аспект бесконечности как атрибута объективного мира заслуживает специального анализа в плане выявления диалектики математического познания. В диалектическом материализме бесконечное есть противоположность конечного и вместе с тем его момент. Значение идеи бесконечности для научного познания определяется тем, что без нее невозможно познание конечного. «…По существу, — говорит Ф. Энгельс, — мы можем познавать только бесконечное»[49]. Действительно, всякое общее утверждение ориентировано на потенциально бесконечный ряд явлений.
В математике понятие бесконечности изучается главным образом теорией множеств. Начало этим исследованиям было положено Г. Кантором, которому удалось объединить понятия актуальной и потенциальной бесконечности в едином понятии предела бесконечной последовательности, рассматриваемого как начало новой последовательности так называемых «трансфинитных» чисел[50].
Современная математика исследует преимущественно лишь количественный аспект реальной бесконечности. Встречающиеся на этом пути трудности показывают, что «бесконечное количество» качественно отличается от конечного количества. «Бесконечное количество» в отличие от конечного не может быть ни увеличено, ни уменьшено, для него не выполняется принцип «целое больше части». Как показал Т. Сколем, «кардинальное число» бесконечного множества (характеризующее «число элементов» множества) не является абсолютной характеристикой для конечного множества, а зависит от способа рассмотрения. В этом отражается сложная количественно-качественная природа бесконечности, для адекватного отображения которой в современной математике, по-видимому, еще не разработана подходящая система понятий[51]. Тем не менее исследование понятия бесконечности в математике, особенно в связи с обнаружением парадоксов теории множеств, привело к значительным результатам научного и методологического характера.
Таким образом, анализ некоторых диалектико-материалистических проблем математического познания свидетельствует о том, что для его понимания необходимо опираться на основные принципы теории отражения: принцип активности субъекта, принцип иерархичности процесса и результата отражения, принцип единства онтологии, гносеологии и методологии[52]. Активный характер отражения в математическом познании проявляется во взаимодействии конструктивных и неконструктивных элементов знания, иерархичность отражения — в использовании метаобъекта и метаисследования как средств познания объективной реальности, единство объективной и субъективной диалектики — в том, что познание объекта математики осуществляется посредством исследования не только его самого, но и форм деятельности математиков в процессе исследования.