§ 1. Уравнение Шредингера для атома водорода
Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.
Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.
Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент количества движения постоянен.
В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке х, у, z в момент t через ψ(x, у, z, t). Согласно квантовой механике, скорость изменения этой амплитуды со временем дается гамильтоновым оператором, действующим на ту же функцию. Из гл. 14 мы знаем, что
(17.1)
где
(17.2)
Здесь m—масса электрона, а V(r)— потенциальная энергия электрона в электростатическом поле протона. Считая на больших удалениях от протона V=0, можно написать[79]
Волновая функция ψ должна тогда удовлетворять уравнению
(17.3)
Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид
(17.4)
Тогда функция ψ(r) должна быть решением уравнения
(17.5)
где Е — некоторое постоянное число (энергия атома).
Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.
Лапласиан в прямоугольных координатах определялся так:
Вместо этого мы хотим воспользоваться координатами r,θ, φ, изображенными на фиг. 17.1.
Фиг. 17.1. Сферические координаты r, θ, φ точки Р.
Они связаны с х, у, z формулами
Вас ждут довольно нудные алгебраические выкладки, но в конце концов вы должны будете прийти к тому, что для произвольной функции f(r)=f(r, θ, φ):
(17.6)
Итак, в полярных координатах уравнение, которому должна удовлетворять функция ψ(r, θ, φ), принимает вид
(17.7)
§ 2. Сферически симметричные решения
Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция ψ в общем случае будет зависеть как от θ и φ, так и от r, можно все же поискать, не бывает ли такого особого случая, когда ψ не зависит от углов. Если волновая функция от углов не зависит, то при поворотах системы координат ни одна из амплитуд никак не будет меняться. Это означает, что все компоненты момента количества движения равны нулю. Такая функция ψ должна соответствовать состоянию с равным нулю полным моментом количества движения. (На самом деле, конечно, равен нулю только орбитальный момент количества движения, потому что остается еще спин электрона, но мы на эту часть момента не обращаем внимания.) Состояние с нулевым орбитальным моментом количества движения имеет особое название. Его называют «s-состоянием» (можете считать, что s от слова «сферически симметричный»)[80].
Раз ψ не собирается зависеть от θ и φ, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:
(17.8)
Прежде чем заняться решением подобного уравнения, хорошо бы, изменив масштаб, убрать из него все лишние константы вроде е2, m, ℏ. От этого выкладки станут легче. Если сделать подстановки
(17.9)
(17.10)
то уравнение (17.8) обратится (после умножения на ρ) в
(17.11)
Эти изменения масштаба означают, что мы измеряем расстояние r и энергию Е в «естественных» атомных единицах. Например, ρ=r/rB, где rB=ℏ2/me2, называется «боровским радиусом» и равно примерно 0,528 Å. Точно так же ε=E/ER, где ER=me4/2ℏ2. Эта энергия называется «ридбергом» и равна примерно 13,6 эв.
Раз произведение ρψ встречается в обеих частях уравнения, то лучше работать с ним, чем с самим ψ. Обозначив
(17.12)
мы получим уравнение, которое выглядит проще:
(17.13)
Теперь нам предстоит найти функцию f, которая удовлетворяет уравнению (17.13), иными словами, просто решить дифференциальное уравнение. К сожалению, не существует никаких общих, годных во всех случаях жизни методов решения любого дифференциального уравнения. Вы должны просто покрутить его то так, то этак. Хоть уравнение не из легких, но люди все же нашли, что его можно решить при помощи следующей процедуры. Первым делом вы заменяете f, которое является некоторой функцией от ρ, произведением двух функций:
(17.14)
Это просто означает, что вы выносите из f(ρ) множитель е-αρ. Для любого f(ρ) это можно сделать. Задача теперь просто свелась к отысканию подходящей функции g(ρ).
Подставив (17.14) в (17.13), мы получим следующее уравнение для g:
(17.15)
Мы вправе выбрать любое α, поэтому сделаем так, чтобы было
(17.16)
тогда получим
(17.17)
Вы можете подумать, что мы не так уж далеко ушли от уравнения (17.13); но новое уравнение тем хорошо, что его можно легко решить разложением g(ρ) в ряд по ρ. В принципе есть возможность таким же способом решать и (17.13), но только все проходит сложнее. Мы говорим: уравнению (17.17) можно удовлетворить некоторой функцией g(ρ), которая записывается в виде ряда
(17.8)
где ak— постоянные коэффициенты. И нам осталось только найти подходящую бесконечную последовательность коэффициентов! Проверим, годится ли такая запись решения. Первая производная такой функции g(ρ) равна
а вторая
Подставляя это в (17.17), имеем
(17.19)
Пока еще не ясно, вышло ли у нас что-нибудь; но мы рвемся вперед. Если мы первую сумму заменим некоторым ее эквивалентом, то все выражение станет выглядеть лучше. Первый член в сумме равен нулю, поэтому каждое k можно заменить на k+1, от этого ничего в бесконечном ряде не изменится. Значит, первую сумму мы вправе записать и так:
Теперь можно объединить все три суммы в одну:
(17.20)
Этот степенной ряд должен обращаться в нуль при всех мыслимых значениях ρ, что возможно лишь тогда, когда коэффициенты при каждой степени ρ порознь равны нулю. Мы получим решение для атома водорода, если отыщем такую последовательность ak, для которой
(17.21)
при всех k>1. А это, конечно, устроить легко. Выберите какое угодно а1. Затем все прочие коэффициенты образуйте с помощью формулы
(17.22)
Пользуясь ею, вы получите а2, а3, а4 и т. д., и каждая пара будет, конечно, удовлетворять (17.21). Мы получим ряд для g(ρ), удовлетворяющий (17.17). С его помощью мы напишем ψ — решение уравнения Шредингера. Обратите внимание, что решения зависят от того, какова предполагаемая энергия (через α), но для каждого значения ε получается свой ряд.
Решение-то у нас есть, но что оно представляет физически? Понятие об этом мы получим, поглядев, что происходит вдалеке от протона — при больших ρ. Там основное значение приобретают наивысшие степени членов ряда, т. е. нам надо посмотреть, что бывает при больших k. Когда k≫1, то уравнение (17.22) приближенно совпадает с :
а это означает, что
(17.23)
Но это как раз коэффициенты разложения в ряд е+2αρ. Функция g оказывается быстро растущей экспонентой. Даже после умножения на е-αρ получающаяся функция f(ρ) [см. (17.14)] будет при больших ρ меняться как еαρ. Мы нашли математическое решение, но оно не является физическим. Оно представляет случай, когда электрону менее всего вероятно очутиться вблизи протона! Чаще всего он вам повстречается на очень больших расстояниях ρ. А волновая функция для связанного электрона должна при больших ρ стремиться к нулю.
Придется подумать, нельзя ли как-нибудь обмануть решение. Оказывается, можно. Посмотрите! Если бы, по счастью, оказалось, что α=1/n, где n — любое целое число, то уравнение (17.22) привело бы к an+1=0. И все высшие члены обратились бы тоже в нуль. Вышел бы не бесконечный ряд, а конечный многочлен. Любой многочлен растет медленнее, чем еαρ, поэтому множитель е-αρ наверняка забьет его при больших ρ, и функция f при больших ρ будет стремиться к нулю. Единственные решения для связанных состояний это те, для которых α=1/n, где n=1, 2, 3, 4 и т. д.
Оглядываясь на уравнение (17.16), мы видим, что у сферически симметричного волнового уравнения могут существовать решения для связанных состояний лишь при энергиях
Допустимы только те энергии, которые составляют именно такую часть ридберга ЕR=me4/2ℏ2, т. е. энергия n-го уровня равна
(17.24)
Кстати, ничего мистического в отрицательных энергиях нет. Они отрицательны просто потому, что когда мы решили писать V=-е2/r, то тем самым в качестве нуля энергии выбрали энергию электрона, расположенного вдалеке от протона. Когда он ближе, то его энергия меньше, т. е. ниже нуля. Энергия ниже всего (самая отрицательная) при n=1 и возрастает к нулю с ростом n.
Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описываются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 эв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ER должно равняться me4/2ℏ2. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.
Теперь, когда мы рассчитали наш первый атом, давайте рассмотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:
(17.25)
где
(17.26)
и
(17.27)
Пока нас интересует главным образом относительная вероятность обнаружить электрон в том или ином месте, можно в качестве а1 выбирать любое число. Возьмем, например, а1=1. (Обычно выбирают а1 так, чтобы волновая функция была «нормирована», т. е. чтобы полная вероятность обнаружить электрон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)
В низшем энергетическом состоянии n=1 и
(17.28)
Если атом водорода находится в своем основном (наиболее низком энергетическом) состоянии, то амплитуда того, что электрон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного ρ, или одного боровского радиуса rB.
Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна
(17.29)
Волновая функция для следующего уровня равна
(17.30)
Эти три волновые функции начерчены на фиг. 17.2.
Фиг. 17.2. Волновые функции трех первых состояний атома водорода с l=0. Масштабы выбраны так, чтобы полные вероятности совпадали.
Общая тенденция уже видна. Все волновые функции при больших ρ, поколебавшись несколько раз, приближаются к нулю. И действительно, число «изгибов» у ψn как раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n-1.
§ 3. Состояния с угловой зависимостью
Мы нашли, что в состояниях, описываемых волновой функцией ψn(r), амплитуда вероятности обнаружить электрон сферически симметрична; она зависит только от r — расстояния до протона. Момент количества движения таких состояний равен нулю. Теперь займемся состояниями, у которых какой-то момент количества движения имеется.
Можно было бы, конечно, просто исследовать чисто математическую задачу отыскания функций от r, θ и φ, удовлетворяющих дифференциальному уравнению (17.7), добавив только физическое условие, что единственно приемлемые для нас функции — это такие, которые при больших r стремятся к нулю. Так почти всегда и поступают. Но мы попробуем несколько сократить наш путь и воспользоваться тем, что мы уже знаем, именно тем, что нам известно, как амплитуды зависят от пространственных углов.
Атом водорода в том или ином состоянии — это частица с определенным «спином» j — квантовым числом полного момента количества движения. Часть этого спина возникает от собственного спина электрона, другая — от движения электрона. Поскольку каждая из этих частей действует (в очень хорошем приближении) независимо, то мы по-прежнему будем игнорировать спиновую часть и учтем только «орбитальный» момент. Впрочем, это орбитальное движение в точности подобно спину. Скажем, если орбитальное квантовое число есть l, то z-компонента момента количества движения может быть l, l-1, l-2, ..., -l. (Мы, как обычно, измеряем все в единицах ℏ.) Кроме того, по-прежнему годятся все наши матрицы поворота и прочие известные свойства. (Начиная с этого места, мы действительно начнем пренебрегать спином электрона; говоря о «моменте количества движения», мы будем иметь в виду только орбитальную его часть.)
Поскольку поле с потенциалом V, в котором движется электрон, зависит только от r, а не от θ и не от φ, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e2/r; оно справедливо при движении в любом «центральном поле» — поле, зависящем только от r.
Представим себе некоторое возможное состояние электрона; внутренняя угловая структура этого состояния будет определяться квантовым числом l. В зависимости от «ориентации» полного момента количества движения относительно оси z его проекция m на ось z может равняться одному из 2l+1 чисел между +l и -l. Пусть, например, m=1. С какой амплитудой электрон окажется на оси z на расстоянии r от начала? С нулевой. Электрон на оси z не может иметь какого-либо орбитального момента относительно этой оси. Но пусть тогда m=0. Вот это другое дело; теперь уже может появиться не равная нулю амплитуда того, что электрон окажется на оси z на таком-то расстоянии от протона. Обозначим эту амплитуду Fl(r). Это — амплитуда того, что электрон будет обнаружен на расстоянии r по оси z, когда атом находится в состоянии |l, 0>, т. е. в состоянии с орбитальным моментом l и его z-компонентой m=0.
А если нам известно Fl(r), то известно все. Теперь уже в любом состоянии |l, m> мы можем узнать амплитуду ψlm(r) того, что электрон обнаружится в произвольном месте атома. Как мы это узнаем? А вот следите. Пусть у нас есть атом в состоянии |l, m>. Какова амплитуда того, что электрон обнаружится под углом θ, φ и на расстоянии r от начала? Проведите новую ось z, скажем z', под этим углом (фиг. 17.3) и задайте вопрос: какова амплитуда того, что электрон окажется на новой оси z на расстоянии r?
Фиг. 17.3. Точка (х, у, z) лежит на оси z' системы координат х', у', z'.
Мы знаем, что он не сможет оказаться на оси z', если только m — его z'-компонента момента количества движения — не равна нулю. Когда же m'=0, то амплитуда того, что электрон обнаружится на оси z', есть Fl(r). Значит, результат получится перемножением двух амплитуд. Первая это амплитуда того, что атом, находящийся в состоянии |l, m> относительно оси z, окажется в состоянии |l, m'=0>относительно оси z'. Умножьте эту амплитуду на Fl(r) и вы получите амплитуду ψl,m(r) того, что электрон обнаружится в точке (r, θ, φ) относительно первоначальной системы осей.
Давайте все это распишем. Матрицы преобразования для поворотов мы уже вычислили. Чтобы перейти от системы х, у, z к системе х', у', z' (см. фиг. 17.3), можно сперва сделать поворот вокруг оси z на угол φ, а потом сделать поворот вокруг новой оси у (оси у') на угол θ. Совместный поворот выразится произведением
Амплитуда того, что после поворота обнаружится состояние |l, m'=0>, есть
(17.31)
В итоге получаем
(17.32)
Орбитальное движение может обладать только целыми значениями l. (Если электрон может быть обнаружен в любом месте, где r≠0, то имеется некоторая амплитуда того, что в этом направлении будет m=0. А состояния с m=0 бывают только при целых спинах.) Матрицы поворота для l=1 приведены в табл.15.2. Для больших l вы можете воспользоваться общими формулами, выведенными в гл. 16. Матрицы Rz(φ) и Ry(θ) написаны по отдельности, но как их комбинировать, вы знаете. В общем случае вы начнете с состояния |l, m> и подействуете на него оператором Rz(φ), получив новое состояние Rz(φ)|l, m> (которое просто равно eimφ|l, m>). Затем вы подействуете на это состояние оператором Ry(θ) и получите состояние Ry(θ) Rz(φ) |l, m>. Умножение на <l, 0| даст вам матричный элемент (17.31).
Матричные элементы операции поворота — это алгебраические функции от θ и φ. Те частные виды функций, которые появляются в (17.31), возникают и во многих других задачах, связанных с волнами на сфере. Им присвоили особое имя. Правда, не у всех авторов обозначения одинаковы; чаще всего все же пишут
(17.33)
Функции Yl,m(θ, φ) называют сферическими гармониками, а a — просто численный множитель, который зависит от того, как определено Yl,m. При обычном определении
(17.34)
В этих обозначениях волновые функции водорода записываются так:
(17.35)
Угловые функции Yl,m(θ,φ) важны не только во многих квантовомеханических задачах, но и во многих областях классической физики, в которых встречается оператор ∇2, например в электромагнетизме. В качестве другого примера их применения в квантовой механике рассмотрим распад возбужденного состояния Ne20 (о котором говорилось в предыдущей главе), которое испускает α-частицу и превращается в О16:
Допустим, что возбужденное состояние имеет спин l (обязательно целый), а z-компонента момента количества движения есть т. Спросим вот о чем: если даны l и m, то какова амплитуда того, что α-частица вылетит в направлении, составляющем с осью z угол θ и с плоскостью xz угол φ (фиг. 17.4)?
Фиг. 17.4. Распад возбужденного состояния Ne20.
Решить эту задачу нам поможет следующее наблюдение. Распад, в котором α-частица вылетает прямо вдоль оси z, должен происходить из состояния с m=0. Это потому, что у самих О16 и α-частицы спин равен нулю, а за счет движения вдоль оси z момента вокруг этой оси не создашь. Обозначим эту амплитуду а (на единицу телесного угла). Тогда, чтобы найти амплитуду распада под произвольным углом (см. фиг. 17.4), остается только узнать, с какой амплитудой данное начальное состояние будет обладать нулевым моментом относительно направления распада. Амплитуда того, что распад будет в направлении (θ, φ), тогда будет равна произведению а на амплитуду того, что состояние |l, m> относительно оси z окажется в состоянии |l, 0> относительно z' (направления распада). Эта последняя амплитуда как раз и есть то, что мы писали в (17.31). Вероятность увидеть α-частицу под углом (θ, φ), стало быть, равна
Для примера рассмотрим начальное состояние с l=1 и различными т. Из табл. 15.2 мы знаем все нужные амплитуды:
(17.36)
Это и есть три возможные амплитуды угловых распределений, в зависимости от того, какое m у первоначального ядра.
Такие амплитуды, как (17.36), встречаются так часто и так важны, что им дали несколько названий. Если амплитуда углового распределения пропорциональна любой из этих трех функций или любой их линейной комбинации, то мы говорим: «орбитальный момент системы равен единице». Или можно сказать: «Ne20* испускает р-волну». Или говорят: «α-частица испускается в состоянии с l=1». Выражений так много, что даже стоит составить словарик. Если вы хотите понимать разговор физиков, то вам просто нужно выучить их язык. В табл. 17.1 приведен словарь орбитальных моментов количества движения.
Таблица 17.1. СЛОВАРИК ОРБИТАЛЬНЫХ МОМЕНТОВ (l=j-ЦЕЛЫЕ ЧИСЛА)
Если орбитальный момент равен нулю, то повороты системы координат ничего не меняют и зависимости от угла нет: «зависимость» от угла имеет вид постоянной, скажем 1. Это называют «s-состоянием». Есть только одно такое состояние, пока дело касается только зависимости от угла. Если орбитальный момент равен 1, то амплитуда зависимости от углов может быть одной из трех приведенных функций, смотря по тому, чему равно m, или их линейной комбинацией. Их называют «р-состояниями». Таких состояний три. Если орбитальный момент равен 2, то подобных функций пять (см. таблицу). Любая их линейная комбинация называется «l=2»-амплитудой, или амплитудой «d-волны». Теперь вы сразу догадаетесь, какая будет следующая буква. Что должно идти после s, p, d? Ну, конечно же, f, g, h и т. д. по алфавиту. Буквы эти ничего не значат. [Когда-то они что-то значили: «резкая» (sharp), «главная» (principal), «диффузная» (diffuse) и «фундаментальная» (fundamental) серии линий оптического спектра атомов. Но это было тогда, когда еще не было известно, откуда эти серии линий берутся. После f особых названий уже не было, так что мы сейчас просто продолжаем g, h и т. д.]
Угловые функции в таблице проходят под несколькими именами и определяются порой с небольшими вариациями в численных множителях, стоящих впереди. Иногда их называют «сферические гармоники» и обозначают Yl,m(θ,φ). Иногда их пишут Рlm(cosθ)eimφ, а при m=0 просто Рl(cosθ). Функции Pl(cosθ) называются «полиномы Лежандра» по cosθ, а функции Plm(cosθ) именуют «присоединенными функциями Лежандра». Таблицы этих функций встречаются во многих книгах.
Обратите, кстати, внимание, что все функции с данным l имеют одну и ту же четность — при нечетных l они от инверсии меняют свой знак, при четных l — нет. Поэтому можно написать, что четность состояния с орбитальным моментом l равна (-1)l.
Как мы видели, одни и те же угловые распределения могут относиться к разным вещам: к ядерному распаду, к другим ядерным процессам, к распределению амплитуд наблюдения электрона в том или ином месте атома водорода. Например, если электрон находится в р-состоянии (l=1), то амплитуда того, что он обнаружится в каком-то месте, зависит от угла определенным образом, но всегда представляет собой линейную комбинацию трех функций для l=1 из табл. 17.1. Возьмем очень интересный случай cosθ. Он означает, что амплитуда, скажем, положительна в верхней части (θ<π/2), отрицательна в нижней (θ>π/2) и равна нулю при θ=90°. Возводя ее в квадрат, видим, что вероятность встретить электрон меняется с θ так, как показано на фиг. 17.5, и не зависит от φ.
Фиг. 17.5. График cos2θ в полярных координатах, дающий относительную вероятность обнаружения электрона под различными углами к оси z (для данного r) в состоянии атома с l=1 и m=0.
Такое угловое распределение ответственно за то, что в молекулярной связи притяжение электрона в состоянии l=1 к другому атому зависит от направления. Отсюда ведет свое начало направленная валентность химического притяжения.
§ 4. Общее решение для водорода
В уравнении (17.35) мы записали волновые функции атома водорода в виде
(17.37)
Эти волновые функции должны быть решениями дифференциального уравнения (17.7). Посмотрим, что это означает. Подставим (17.37) в (17.7); получим
(17.38)
Помножим все на r2/Fl и переставим члены; результат будет таков:
(17.39)
Левая часть этого уравнения зависит от θ и φ, а от r не зависит. Какое бы значение r мы ни взяли, от этого левая часть не изменится. Значит, то же должно быть выполнено и для правой части. Хотя в выражении в квадратных скобках там и сям попадаются разные r, все выражение от r зависеть не может, иначе бы не получилось уравнение, которое годится для всех r. Кроме того, как вы видите, эта скобка не зависит ни от θ, ни от φ. Она должна быть постоянным числом. Его величина имеет право зато зависеть от значения l того состояния, которое мы изучаем, поскольку этому состоянию принадлежит функция Fl; поэтому постоянное число мы обозначим Kl. Уравнение (17.35), стало быть, равнозначно двум уравнениям
(17.40)
(17.41)
Теперь взглянем на то, что мы сделали. Для каждого состояния, описываемого числами l и m, мы знаем функции Yl,m; тогда из уравнения (17.40) можно определить Kl Затем, подставив Kl в (17.41), мы получим дифференциальное уравнение для функции Fl(r). Если мы его сможем решить, то все множители, входящие в (17.37), нам станут известны, и мы узнаем ψ(r).
Чему же равно Кl? Ну, во-первых, заметьте, что при всех m (входящих в данное l) оно должно быть одним и тем же, поэтому мы вправе выбрать в Yl,m то m, какое нам нравится, и вставить его в (17.40). Пожалуй, проще всего взять Yl,l. Из уравнения (16.24)
(17.42)
Матричный элемент Ry(θ) тоже совсем прост:
(17.43)
где b — некоторое число[81]. Объединяя их, получаем
(17.44)
Подстановка этой функции в (17.40) даст
(17.45)
Теперь, когда мы определили Кl, уравнение (17.41) даст нам радиальную функцию Fl(r). Перед нами обычное уравнение Шредингера, у которого угловая часть заменена ее эквивалентом KlFl/r2. Перепишем (17.41) в той форме, в какой мы писали уравнение (17.8):
(17.46)
У потенциальной энергии появилась какая-то таинственная добавка. Хотя она появилась на свет после длинной серии математических шагов, тем не менее у нее простое физическое происхождение. Мы беремся рассказать о ее происхождении при помощи полуклассических аргументов. После этого она уже не покажется вам такой таинственной.
Представим классическую частицу, вращающуюся вокруг некоторого силового центра. Полная энергия сохраняется и является суммой потенциальной и кинетической энергий
В общем случае v разлагается на радиальную компоненту vr и на касательную компоненту r.θ, т. е.
Момент количества движения mr2.θ тоже сохраняется; пусть он равняется L. Тогда можно написать
т. е. энергия равна
Если бы момента количества движения не было, у нас осталось бы только два первых члена. Добавление момента количества движения L изменяет энергию как раз так, как если бы к потенциальной энергии добавился член L2/2mr2. Но он почти точно совпадает с добавкой (17.46). Единственная разница в том, что вместо ожидаемого числителя l2ℏ2 (этого можно было бы ожидать) появляется комбинация l(l+1)ℏ2 Но мы еще раньше видели [например, в гл. 34, § 7 (вып. 7)], что это обычная замена, к которой всегда приходится прибегать, если хотят, чтобы квазиклассические рассуждения совпали с правильным квантовомеханическим расчетом. Поэтому новый член можно понимать как своего рода «потенциал», определяющий «центробежную силу» и возникающий в уравнениях радиального движения вращающейся системы [см. гл. 12, § 5 (вып. 1)].
Теперь мы уже можем решить уравнение (17.46) относительно Fl(r). Оно очень похоже на (17.8), так что прибегнем к той же технике. Все повторяется вплоть до уравнения (17.19), в котором появится добавочный член
(17.47)
Его можно записать еще и так:
(17.48)
(Мы выделили первый член, а затем текущий индекс k сдвинули на единицу.) Вместо (17.20) появится
(17.49)
Поскольку член с ρ-1 только один, то он должен обратиться в нуль. Коэффициент a1 должен быть равен нулю (если только l не равно нулю, но тогда мы приходим к нашему прежнему решению). А когда все квадратные скобки при любых k обратятся в нуль, то и все следующие члены станут равны нулю. Из-за этого условие (17.21) переходит в
(17.50)
Это единственное существенное видоизменение по сравнению со сферически симметричным случаем.
Как и раньше, ряд должен оборваться, если мы хотим, чтобы решения представляли связанные электроны. Если αn=1, то ряд оборвется на k=n. Условие на α получается таким же: α должно быть равно 1/n, где n — целое число. Однако (17.50) приводит и к новому ограничению. Индекс k не может быть равен l, в противном случае знаменатель обратится в нуль, а аl+1 — в бесконечность. Иначе говоря, поскольку a1=0, то (17.50) подразумевает, что все последовательные ak обращаются в нуль, пока мы не придем к аl+1, которое может быть и не нулем. Это означает, что k должно начинаться с l+1 и кончаться на n.
Окончательный итог таков: при любом l имеется набор возможных решений, которые мы обозначим Fn,l, где n>l+1. Каждое решение обладает энергией
(17.51)
Волновая функция состояния с такой энергией и с угловыми квантовыми числами l и m имеет вид
(17.52)
где
(17.53)
Коэффициенты ak получаются из (17.50). Наконец-то в наших руках полное описание состояний атома водорода.
§ 5. Волновые функции водорода
Посмотрим же, что мы открыли. Состояния, которые удовлетворяют уравнению Шредингера для электрона в кулоновом поле, характеризуются тремя (причем целыми) квантовыми числами n, l, m. Угловое распределение амплитуды электрона может обладать только определенными формами, которые мы обозначим Yl,m. Они нумеруются числом l — квантовым числом полного момента количества движения и m — «магнитным» квантовым числом, которое может меняться от -l до +l. При каждой угловой конфигурации возможны различные радиальные распределения Fn,l(r) амплитуды электрона; они нумеруются главным квантовым числом n, которое может меняться от l+1 до ∞. Энергия состояния зависит только от n и растет с n.
Состояние наинизшей энергии, или основное, является s-состоянием. У него l=0, n=1 и m=0. Это «невырожденное» состояние: имеется только одно состояние с такой энергией, а волновая функция у него сферически симметрична. Амплитуда того, что электрон обнаружится, достигает максимума в центре и монотонно спадает с удалением от центра. Эту электронную амплитуду можно изобразить этаким комочком (фиг. 17.6,а).
Фиг. 17.6. Наброски, отражающие общий характер волновых функций водорода. В заштрихованных местах амплитуды велики. Знаки плюс и минус — это относительные знаки амплитуд в каждой области.
Имеются и другие s-состояния, с большими энергиями; у них n=2, 3, 4, ... и l=0. Каждой энергии соответствует только одно состояние m=0, и все они сферически симметричны. Амплитуды этих состояний с ростом r один или несколько раз меняют знак. Имеется n-1 сферических узловых поверхностей, или мест, где ψ проходит через нуль. Например, 2s-состояние (l=0, n=2) выглядит так, как показано на фиг. 17.6, б. (Темные области указывают те места, где амплитуда велика, а знаки плюс и минус отмечают относительные фазы амплитуды.) Уровни энергии s-состояний показаны в первом столбце фиг. 17.7.
Фиг. 17.7. Диаграмма уровней энергии водорода.
Затем бывают р-состояния с l=1. Для каждого n (n равно или больше 2) существует тройка состояний с одинаковой энергией, одно с m=+1, другое с m=0, третье с m=-1. Уровни энергии отмечены на фиг. 17.7. Угловые зависимости этих состояний приведены в табл. 17.1. Так, при m=0, если амплитуда положительна для углов θ, близких к нулю, то при углах θ, близких к 180°, она окажется отрицательной. Имеется узловая плоскость, совпадающая с плоскостью ху. При n>1 бывают также конические узловые поверхности. Амплитуда n=2, m=0 намечена на фиг. 17.6,в, а волновая функция n=3, m=0 — на фиг. 17.6, г.
Могло бы показаться, что поскольку m дает, так сказать, «ориентацию» в пространстве, то должны наблюдаться еще такие же распределения, но с пиками вдоль оси х или вдоль оси у. Можно подумать, что это скорее всего состояния с m=+1 и с m=-1. Однако это не так! Но зато раз у нас есть тройка состояний с одинаковыми энергиями, то любая линейная комбинация из этой тройки тоже будет стационарным состоянием с той же энергией. Оказывается, что «x»-состояние (по аналогии с «z»-состоянием, или состоянием с m=0, см. фиг. 17.6, в) это линейная комбинация состояний с m=+1 и с m=-1. Другая комбинация дает «y»-состояние. Точнее, имеется в виду, что состояния
если отнести их к своим осям, выглядят одинаково.
У d-состояний (l=2) для каждой энергии есть пять возможных значений m; наинизшей энергией обладает n=3. Уровни показаны на фиг. 17.7. Угловые зависимости усложняются. К примеру, состояния с m=0 обладают двумя коническими узловыми поверхностями, так что при переходе от северного полюса к южному волновая функция меняет фазы с + на — и обратно на +. Примерная форма амплитуды нарисована на фиг. 17.6,д и е для состояний с m=0 и n=3 и 4. И снова при больших n появляются конические узловые поверхности.
Мы не будем пытаться описывать другие последующие состояния. Подробное изложение волновых функций водорода вы найдете во многих книгах. Рекомендую вам особенно; L. Pauling, E.B.Wilson, Introduction to Quantum Mechanics, New York, 1935; R. B. Leightоn, Principles of Modern Physics, New York, 1959. В этих книгах вы найдете графики некоторых функций и графическое изображение многих состояний.
Хотелось бы упомянуть об одном особом свойстве волновых функций при высших l: при l>0 амплитуды обращаются в центре в нуль. Ничего в этом удивительного нет, ведь электрону трудно иметь большой момент, когда плечо момента очень мало. По этой причине чем l больше, тем дальше амплитуды «отталкиваются» от центра. Если вы посмотрите, как радиальные функции F(r) меняются при малых r, то из (17.53) окажется, что
Такая зависимость от r означает, что при больших l вам придется дальше отойти от r=0, чтобы получить заметную амплитуду. Такое поведение, кстати, определяется членом с центробежной силой в радиальном уравнении, так что все это применимо к любому потенциалу, который при малых r меняется медленнее, чем 1/r2, а таково большинство атомных потенциалов.
§ 6. Периодическая таблица
Теперь мы хотели бы применить теорию атома водорода к объяснению химической периодической таблицы элементов. В атоме элемента с атомным номером Z имеется Z электронов, которые удерживаются электрическим притяжением ядра, но при этом взаимно отталкиваются друг от друга. Чтобы получить точное решение, пришлось бы решить уравнение Шредингера для Z электронов в кулоновом поле. Для гелия уравнение имеет вид
где ∇21 — лапласиан, который действует на r1, координату первого электрона; ∇22 действует на r2, а r12=|r1-r2|. (Мы опять пренебрегаем спинами электронов.) Чтобы найти стационарные состояния и уровни энергии, следовало бы отыскать решения вида
Геометрическая зависимость заключена в f — функции шести переменных — одновременных положений двух электронов. Аналитического решения никто не знает, хотя решения для низших энергетических состояний и были найдены численными методами.
Когда электронов 3, 4 или 5, безнадежно пытаться получить точные решения. Поэтому было бы опрометчиво утверждать, что квантовая механика до конца объяснила периодическую таблицу. Но все же можно сказать, что даже с помощью довольно сомнительных приближений (и кое-какой последующей отделки) удается, по крайней мере качественно, понять многие химические свойства, проявляющиеся в периодической таблице.
Химические свойства атомов определяются в первую очередь их низшими энергетическими состояниями. Для отыскания этих состояний и их энергий мы воспользуемся следующей приближенной теорией. Во-первых, пренебрежем спином электрона, разве только что принцип запрета будет принят нами во внимание и мы будем считать, что каждое частное электронное состояние может быть занято только одним электроном. Это означает, что на одной орбите не может оказаться больше двух электронов — один со спином, направленным вверх, другой — вниз. Затем мы в первом приближении пренебрежем деталями взаимодействия электронов и будем считать, что каждый электрон движется в центральном поле, образуемом полями ядра и всех прочих электронов. Про неон, у которого 10 электронов, мы скажем, например, что каждый электрон в атоме неона испытывает влияние среднего потенциала ядра и оставшейся девятки электронов. Мы вообразим далее, что в уравнение Шредингера для каждого электрона мы подставляем V(r) — то же поле 1/r, но только видоизмененное за счет сферически симметричной плотности заряда, возникшей от остальных электронов.
В такой модели каждый электрон ведет себя как независимая частица. Угловые зависимости его волновой функции будут попросту такими же, какие были у атома водорода. Это будут те же s-состояния, р-состояния и т. п., и у них будут различные значения m. Раз V(r) больше не следует закону 1/r, то радиальная часть волновых функций слегка перекраивается, но качественно останется прежней, так что по-прежнему будет существовать радиальное квантовое число n. Энергии состояний тоже станут немного иными.
Что же при таких представлениях у нас получится с водородом? У основного состояния водорода l=m=0 и n=1; мы говорим, что у него электронная конфигурация 1s. Энергия равна -13,6 эв. Это значит, что для отрыва электрона от атома нужно 13,6 эв энергии. Ее называют «энергией ионизации», W1. Большая энергия ионизации означает, что оторвать электрон трудно, но водород может отнять электрон у другого атома, а потому он химически активен.
Теперь обратимся к гелию. Оба электрона в гелии могут находиться в одном и том же нижнем состоянии (только у одного спин направлен вверх, у другого — вниз). В своем наинизшем состоянии электрон движется в поле с потенциалом, который при малых r походит на кулонов потенциал с Z=2, а при больших r — на кулонов потенциал с Z=1. В результате возникает «водородоподобное» 1s-состояние с несколько более низкой энергией. Оба электрона занимают одни и те же 1s-состояния (l=0, m=0). Наблюдаемая энергия ионизации (требуемая на отрыв одного электрона) равна 24,6 эв. Поскольку теперь «оболочка» 1s заполнена (больше двух электронов в нее не втиснешь), то практически не возникает тенденции уводить у других атомов электроны. Гелий химически инертен.
Ядро лития имеет заряд 3. Состояния электрона опять будут водородоподобны, и тройка электронов займет три нижних уровня энергии. Два попадут в состояния 1s, а третий пойдет в состояние n=2. Но вот с l=0 или с l=1? В водороде у этих состояний энергия одна и та же, в других же атомах это не так, и вот по какой причине. Вспомним, что у 2s-состояния есть некоторая амплитуда того, что оно окажется вблизи ядра, а у 2р такой амплитуды нет. Это означает, что 2s-электрон как-то ощутит тройной электрический заряд ядра Li, а 2р-электрон останется там, где поле выглядит как кулоново поле единичного заряда. Добавочное притяжение понизит энергию 2s-состояния по сравнению с энергией 2р-состояния. Уровни энергии примерно окажутся такими, как показано на фиг. 17.8 (сравните с соответствующей диаграммой на фиг. 17.7 для водорода).
Фиг. 17.8. Схематическая диаграмма уровней энергии атомного электрона в присутствии других электронов. Масштаб иной, нежели на фиг. 17.7.
Значит, в атоме лития два электрона будут в 1s-состояниях, а один — в 2s-состоянии. Поскольку электрон в 2s-состоянии обладает более высокой энергией, чем электрон в 1s-состоянии, то его сравнительно легко удалить. Ионизационная энергия лития всего 5,4 эв, и он весьма активен химически.
Так постепенно перед вами развертывается вся картина; в табл. 17.2 мы привели список первых 36 элементов, отметив состояния, занимаемые электронами в основном состоянии каждого атома. Таблица дает энергию ионизации для наиболее слабо связанного электрона и количество электронов, занимающих каждую «оболочку», т. е. состояние с одним и тем же n.
Таблица 17.2. ЭЛЕКТРОННЫЕ КОНФИГУРАЦИИ ПЕРВЫХ 36 ЭЛЕМЕНТОВ (число электронов в разных состояниях)
Поскольку разные l-состояния обладают разными энергиями, то каждое значение l отвечает некоторой подоболочке из 2(2l+1) возможных состояний (с различными m и различными направлениями спина). У всех у них энергия одинакова с точностью до некоторых слабых эффектов, которыми мы пренебрежем.
Бериллий похож на литий, только у него в 2s-состоянии находятся два электрона, а в заполненной 1s-оболочке тоже два.
У бора 5 электронов. Пятый должен уйти в 2p-состояние. Всего бывает 2x3=6 разных 2p-состояний, поэтому можно продолжать добавлять по электрону, пока не дойдем до 8. Так мы доберемся до неона. Добавляя эти электроны, мы увеличиваем также Z, поэтому все электронное распределение все теснее и теснее стягивается к ядру и энергия 2p-состояний все снижается и снижается. К тому времени, когда мы достигнем неона, энергия ионизации возрастет до 21,6 эв. Неон легко своего электрона не отдает. У него к тому же больше нет пустых мест на орбите, которые можно заполнить, так что и чужие электроны ему не нужны. Стало быть, неон химически инертен. У фтора есть пустое место, попав на которое, электрон может оказаться в состоянии с низкой энергией, поэтому в химических реакциях фтор очень активен.
В натрии одиннадцатый электрон вынужден начать новую оболочку, переходя в 3s-состояние. Уровень энергии этого состояния намного выше; энергия ионизации резко спадает; натрий химически очень активен. От натрия до аргона s- и p-состояния с n=3 заполняются в той же последовательности, как от лития до неона. Угловые конфигурации электронов во внешней незаполненной оболочке идут в той же последовательности, и прогрессирующий рост энергии ионизации тоже весьма схож с тем, что было раньше. Вы теперь понимаете, почему химические свойства с ростом атомного числа повторяются. Химическое действие магния очень похоже на бериллий, кремния — на углерод, хлора — на фтор. Аргон, подобно неону, инертен.
Быть может, вы уже обратили внимание на то, что в последовательности энергий ионизации от лития до неона есть небольшая особенность, и такая же особенность наблюдается между натрием и аргоном. Последний электрон прикреплен к атому кислорода чуть слабее, чем можно было ожидать. Тем же самым отличается сера. Отчего бы это? Это можно понять, если чуть внимательнее вдуматься в эффекты взаимодействия между электронами. Подумаем о том, что бывает, когда мы помещаем в атом бора первый 2p-электрон. Он имеет шесть возможностей — три возможных р-состояния, в каждом по два спина. Представим, что электрон со спином вверх попадает в состояние с m=0, которое мы также будем называть «z»-состоянием, потому что оно облегает ось z. Ну, а что произойдет в углероде? Теперь уже 2p-электронов два. Если один из них попал в «z»-состояние, то куда попадет второй? Ниже всего его энергия будет тогда, когда он расположится подальше от первого электрона. Этого можно достичь, попав, скажем, в «x»-состояние 2p-оболочки. (Это состояние, как вы помните,— просто линейная комбинация состояний с m=+1 и с m=-1.) Дальше, когда мы перейдем к азоту, то у тройки 2p-электронов наименьшая энергия взаимного отталкивания будет тогда, когда один из них попадет в «x»-конфигурацию, другой — в «у», третий — в «z». Весь этот хоровод, однако, для кислорода не проходит. Четвертому электрону уже ничего не остается, как попасть в одно из заполненных состояний, держа при этом спин вниз. Тот электрон, который уже находится в этом состоянии, начнет его сильно отталкивать, так что его энергия не будет такой низкой, какой она была бы в противном случае, поэтому его легче будет удалить. Этим и объясняется разрыв в последовательности энергий связи, который появляется между азотом и кислородом, и между фосфором и серой.
Можно было бы подумать, что за аргоном новые электроны начнут заполнять состояние 3d. Но нет! Как мы уже говорили (и иллюстрировали фиг. 17.7), состояния с высшими моментами сдвинуты по энергии вверх. К моменту, когда мы подошли к 3d-состояниям, они по энергии оказываются задвинутыми немножко выше энергии 4s-состояния. Поэтому в калии последний электрон попадет в 4s-состояние. После этого в кальции оболочка заполнится (двумя электронами), а 3d-состояния начнут заполняться у скандия, титана и ванадия.
Энергии 3р- и 4s-состояний так близки друг к другу, что малозаметные эффекты легко сдвигают равновесие в ту или иную сторону. К моменту, когда придет время поместить в Зd-состояния четыре электрона, их отталкивание так подымет энергию 4s-состояния, что она станет чуть выше энергии Зd-состояния, поэтому один электрон из s уходит в d. И для хрома не получается ожидавшаяся комбинация 4, 2, а вместо этого выступает комбинация 5, 1. Новый электрон, добавляемый, чтобы получить марганец, опять заполняет оболочку 4s и затем одно за другим идет заполнение Зd-оболочки, пока мы не доберемся до меди.
Но так как самая внешняя оболочка марганца, железа, кобальта и никеля имеет одну и ту же конфигурацию, то все они обладают близкими химическими свойствами. (Этот эффект еще сильнее выражен у редкоземельных элементов. У них внешняя оболочка одинакова, а заполняется постепенно внутренняя ячейка, что меньше сказывается на их химических свойствах.) То же и в меди. В ней тоже построение Зd-оболочки завершается грабежом: из 4s-оболочки уводится один электрон. Энергия комбинации 10, 1, однако, настолько близка у меди к энергии комбинации 9, 2, что равновесие может сместиться уже оттого, что поблизости стоит другой атом. По этой причине два последних электрона меди примерно равноценны, и валентность меди равна то 1, то 2. (Временами она проявляет себя так, как если бы ее электроны были в комбинации 9, 2.) Похожие вещи случаются и в других местах таблицы; они-то и ответственны за то, что другие металлы, такие, как железо, соединяются химически то с той, то с другой валентностью. Наконец, у цинка обе оболочки 3d и 4s заполняются раз и навсегда.
От галлия до криптона последовательность опять продолжается нормально, заполняя 4p-оболочку. Внешние оболочки, энергии и химические свойства повторяют картину изменений на участке от бора до неона и от алюминия до аргона.
Криптон, как и аргон или неон, известен как «благородный» газ. Все эти три «благородных» газа химически «инертны»[82]. Это означает только то, что после того, как они заполнили оболочки со сравнительно низкими энергиями, редки будут случаи, когда им станет энергетически выгодно соединиться в простые сочетания с другими элементами. Но для «благородства» недостаточно просто обладать заполненной оболочкой. У бериллия, например, или у магния заполнены s-оболочки, но энергия этих оболочек чересчур высока, чтобы можно было говорить об устойчивости. Точно так же можно было бы ожидать появления другого «благородного» элемента где-то возле никеля, если бы энергия у 3d-оболочки была бы чуть пониже (или у 4s-оболочки повыше). С другой стороны, криптон не вполне инертен; он образует с хлором слабо связанное соединение.
Поскольку в рассмотренной нами части таблицы уже проявились все основные черты периодической системы, мы обрываем наше изложение на элементе № 36 (их остается еще штук 70, а то и больше!).
Мы хотим отметить еще один момент: мы в состоянии понять в какой-то степени не только валентности, но можем кое-что сказать и о направлениях химических связей. Возьмем такой атом, как кислород. В нем четыре 2р-электрона. Первые три попадают в состояния «x», «у» и «z», а четвертый вынужден заполнить одно из них, оставив два других — скажем, «x» и «у» — вакантными. Посмотрите теперь, что происходит в Н2O. Каждый из двух водородов желает разделить свой электрон с кислородом, помогая кислороду заполнить оболочку. Эти электроны будут стремиться попасть на вакансии в состояниях «x» и «y». Поэтому два водорода в молекуле воды обязаны расположиться под прямым углом друг к другу, если смотреть из центра атома кислорода. На самом деле угол равен 105°. Можно даже понять, почему угол больше 90°. Обобществив свои электроны с кислородом, водороды остаются в конце концов с избытком положительного заряда. Электрическое отталкивание «растягивает» волновые функции и разводит угол до 105°. Так же обстоит дело и у H2S. Но атом серы крупнее, атомы водорода оказываются дальше друг от друга, и угол расходится только до 93°. А селен еще крупнее, поэтому в H2Se угол уже совсем близок к 90°.
Аналогичные рассуждения позволяют разобраться в геометрии аммиака H3N. В азоте есть место еще для трех 2р-электронов, по одному на каждое состояние типа «x», «у» и «z». Три водорода будут вынуждены подсоединиться под прямыми углами друг к другу. Углы снова окажутся чуть больше 90°, опять-таки из-за электрического отталкивания, но по крайней мере теперь ясно, отчего молекула H3N не плоская. Углы в фосфине Н3Р уже ближе к 90°, а в H3As еще ближе. Мы не зря предположили, что NH3 не плоский, когда говорили о нем как о системе с двумя состояниями. Именно из-за этой объемности аммиака и возможен аммиачный мазер. Вы видите, что сама форма молекулы аммиака тоже следует из квантовой механики.
Уравнение Шредингера явилось одним из величайших триумфов физики. Снабдив нас ключом к механизму, лежащему в основе строения атома, оно объяснило атомные спектры и всю химию, благодаря чему стала понятна физическая природа материи.