§ 1. Уравнение Шредингера в магнитном поле
Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людьми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться результаты расчетов. А вы должны понимать, что вовсе не обязательно во всем немедленно и до конца разбираться, надо только верить, что если проделать все выкладки, то все так и получится.
Но это не все. Главное — что об этом мне хочется говорить. Это такая свежая, актуальная, современная тема, что вполне законно вынести ее на семинар. Тема эта — классический аспект уравнения Шредингера, явление сверхпроводимости.
Обычно та волновая функция, которая появляется в уравнении Шредингера, относится только к одной или к двум частицам. И сама волновая функция классическим смыслом не обладает в отличие от электрического поля, или векторного потенциала, или других подобных вещей. Правда, волновая функция отдельной частицы — это «поле» в том смысле, что она есть функция положения, но классического значения она, вообще говоря, не имеет. Тем не менее бывают иногда обстоятельства, в которых квантовомеханическая волновая функция действительно имеет классическое значение, именно их я и хочу коснуться. Своеобразие квантовомеханического поведения вещества в мелких масштабах обычно не дает себя чувствовать в крупномасштабных явлениях, если не считать стандартных выводов о том, что оно вызывает к жизни законы Ньютона, законы так называемой классической механики. Но существуют порой обстоятельства, в которых особенности квантовой механики могут особым образом сказаться в крупномасштабных явлениях.
При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состояний в игру включается только очень-очень малое количество состояний — тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопическом уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эффектами — не обычное обсуждение пути, по которому квантовая механика в среднем воспроизводится ньютоновой механикой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.
Начну с того, что напомню вам кое-какие свойства уравнения Шредингера[87]. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явления сверхпроводимости связаны с магнитными полями. Внешнее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала, очень прост.
Фиг. 19.1. Амплитуда перехода из а в b по пути r пропорциональна exp[(-iq/ℏ)∫Ads].
Амплитуда того, что частица при наличии поля перейдет по некоторому пути из одного места в другое (фиг. 19.1), равна амплитуде того, что она прошла бы по этому пути без поля, умноженной на экспоненту от криволинейного интеграла от векторного потенциала, умноженного в свою очередь на электрический заряд и деленного на постоянную Планка [см. гл. 15, § 2 (вып. 6)]:
(19.1)
Это исходное утверждение квантовой механики.
И вот в отсутствие векторного потенциала уравнение Шредингера для заряженной частицы (нерелятивистской, без спина) имеет вид
(19.2)
где φ — электрический потенциал, так что qφ — потенциальная энергия[88]. А уравнение (19.1) равнозначно утверждению, что в магнитном поле градиенты в гамильтониане нужно каждый раз заменять на градиент минус (iq/ℏ)А, так что (19.2) превращается в
(19.3)
Это и есть уравнение Шредингера для частицы с зарядом q (нерелятивистской, без спина), движущейся в электромагнитном поле А, φ.
Чтобы стало ясно, что оно правильно, я хочу проиллюстрировать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому[89]. Тогда, согласно уравнению (19.1), если имеется вектор-потенциал Аx(х, t) в x-направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/ℏ)Axb] — экспоненту с показателем, равным произведению iq/ℏ на векторный потенциал, проинтегрированный от одного атома до другого. Для простоты мы будем писать (q/ℏ)Ax≡f(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)≡Сn амплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением
(19.4)
В нем три части. Во-первых, у электрона, который находится в точке х, есть некоторая энергия Е0. Это, как обычно, дает член Е0С(х). Затем имеется член — КС(х+b), т. е. амплитуда того, что электрон от атома n+1, расположенного в х+b, отпрыгнул на шаг назад. Однако если это происходит в присутствии векторного потенциала, то фаза амплитуды обязана сместиться согласно правилу (19.1). Если Ах на расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать попросту в виде значения Ах посредине, умноженного на расстояние. Итак, произведение (iq/ℏ) на интеграл равно ibf(x+b/2). А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже берется векторный потенциал с другой стороны от х, на расстоянии b/2, и умножается на расстояние b. Это дает третью часть. В сумме получается уравнение для амплитуды того, что частица в поле, характеризуемом векторным потенциалом, окажется в точке х.
Но дальше мы знаем, что если функция С(х) достаточно плавная (мы берем длинноволновый предел) и если мы сдвинем атомы потеснее, то уравнение (14.4) будет приблизительно описывать поведение электрона в пустоте. Поэтому следующим шагом явится разложение обеих сторон (19.4) по степеням b, считая b очень малым. К примеру, если b=0, то правая часть будет равна просто (Е0-2К)С(х), так что в нулевом приближении энергия равняется Е0-2К. Затем пойдут степени b, но из-за того, что знаки показателей экспонент противоположны, останутся только четные степени. В итоге, если вы разложите в ряд Тэйлора С(х), f(x) и экспоненты и соберете затем члены с b2, вы получите
(19.5)
(штрихи обозначают дифференцирование по х).
Это ужасное нагромождение разных букв выглядит очень сложно. Но математически оно в точности совпадает с
(19.6)
Вторая скобка, действуя на С(х), даст С'(х) минус if(x)C(x). Первая скобка, действуя на эти два члена, даст член с С", члены с первыми производными f(x) и с первой производной С(х). А теперь вспомните, что решения в нулевом магнитном поле (см. гл. 11, §3) изображают частицу с эффективной массой mэфф, даваемой формулой
Если вы затем положите Е0=+2К и снова вернетесь к f(x)=(q/ℏ)Ax, то легко убедитесь, что (19.6) это то же самое, что первая часть (19.3). (Происхождение члена с потенциальной энергией хорошо известно, и я не буду им заниматься.) Утверждение (19.1) о том, что векторный потенциал умножает все амплитуды на экспоненциальный множитель, равнозначно правилу, что оператор импульса (ℏ/i)∇ заменяется на (ℏ/i)∇-qA, как мы и сделали в уравнении Шредингера (19.3).
§ 2. Уравнение непрерывности для вероятностей
Перехожу теперь ко второму пункту. Важную сторону уравнения Шредингера отдельной частицы составляет идея о том, что вероятность обнаружить частицу в каком-то месте определяется квадратом абсолютной величины волновой функции. Для квантовой механики характерно также то, что вероятность сохраняется локально (т. е. в каждом отдельном месте). Когда вероятность обнаружить электрон в таком-то месте убывает, а вероятность обнаружить его в каком-то другом месте возрастает (так что полная вероятность не меняется), то что-то в промежутке между этими местами должно было произойти. Иными словами, электрон обладает непрерывностью в том смысле, что если вероятность спадает в одном месте и возрастает в другом, то между этими местами должно что-то протекать. Так, если вы между ними поставите стенку, то это скажется на вероятностях и они станут не такими, как были. Следовательно, одно только сохранение вероятности не есть полная формулировка закона сохранения, все равно как одно только сохранение энергии не обладает такой глубиной и не представляет такой важности, как локальное сохранение энергии [см. гл. 27, § 1 (вып. 6)]. Если энергия исчезает, то этому должен соответствовать отток энергии от этого места. Вот и у вероятности хотелось бы обнаружить такой же «ток». Хотелось бы, чтобы было так: если где-нибудь переменится плотность вероятности (вероятность обнаружить что-то там такое в единице объема), то чтобы можно было считать, что вероятность откуда-то сюда притекла (или утекла отсюда куда-то еще). Такой ток был бы вектором, который можно было бы толковать следующим образом: его x-компонента была бы чистой вероятностью (в секунду и на единицу объема) того, что частица пройдет в направлении х через плоскость, параллельную плоскости yz. Проход в направлении +x считается положительным потоком, а проход в обратную сторону — отрицательным потоком.
Существует ли такой ток? Вы знаете, что плотность вероятности P(r, t) выражается через волновую функцию
(19.7)
И вот, я спрашиваю: существует ли такой ток J, что
(19.8)
Если я продифференцирую (19.7) по времени, то получу два слагаемых
(19.9)
Теперь для ∂ψ/∂t возьмите уравнение Шредингера — уравнение (19.3); кроме того, комплексно его сопрягите, т. е. перемените знак при каждом i, чтобы получить ∂ψ*/∂t. У вас выйдет
(19.10)
Члены с потенциальной энергией и многие другие члены взаимно уничтожатся. А то, что останется, оказывается, действительно можно записать в виде полной дивергенции. Все уравнение целиком эквивалентно уравнению
(19.11)
Не так уж сложно, как кажется на первый взгляд. Это симметричная комбинация из ψ*, умноженного на некоторую операцию над ψ, плюс ψ, умноженное на комплексно сопряженную операцию над ψ*. Это просто некоторая величина плюс комплексно сопряженная ей величина, так что все вместе (как и положено быть) вещественно. Операция запоминается так: это попросту оператор импульса ^℘ минус qA.. Ток из (19.8) я могу записать в виде
(19.12)
Тогда это и есть тот ток J, который удовлетворяет уравнению (19.8).
Уравнение (19.8) показывает, что вероятность сохраняется локально. Если частица исчезает из одной области, то она не может оказаться в другой без того, чтобы что-то не протекло в промежутке между областями. Вообразите, что первая область окружена замкнутой поверхностью, которая проведена так далеко, что имеется нулевая вероятность обнаружить на ней электрон. Полная вероятность обнаружить электрон где-то внутри поверхности равна объемному интегралу от Р. Но, согласно теореме Гаусса, объемный интеграл от дивергенции J равняется поверхностному интегралу от J. Если ψ на поверхности равно нулю, то (19.12) утверждает, что и J есть нуль; значит, полная вероятность отыскать частицу внутри поверхности не может измениться. Только тогда, когда часть вероятности достигает границы, какая-то ее часть может вытечь наружу. Мы вправе говорить, что она выбирается наружу только через поверхность— это и есть локальная сохраняемость.
§ 3. Два рода импульсов
Уравнение для тока довольно интересно, хотя порой причиняет немало забот. Ток можно было бы считать чем-то вроде произведения плотности частиц на скорость. Плотность выглядела бы как ψψ*, так что здесь все в порядке. Каждый член в (19.12) напоминает типичное выражение для среднего значения оператора
(19.13)
Поэтому, быть может, следовало бы рассматривать его как скорость потока? Но тогда получается, что скорость с импульсом можно связать двояким образом, ведь с равным правом можно было бы считать, что скоростью должно быть отношение импульса к массе ^℘/m. Эти две возможности разнятся на вектор-потенциал.
Оказывается, те же две возможности имелись еще в классической физике, и в ней тоже было найдено, что импульс можно определить двумя путями[90]. Один можно назвать «кинематическим импульсом», но для абсолютной ясности я в этой лекции буду его называть «mv-импульсом». Это импульс, получаемый от перемножения массы на скорость. Другой, более математичный, более отвлеченный импульс, именуемый иногда «динамическим импульсом», а я его буду называть «р-импульс». Итак, у нас есть две возможности:
(19.14)
(19.15)
И вот оказывается, что в квантовой механике, включающей магнитные поля, с оператором градиента ^℘ связан именно р-импульс, так что оператор скорости это (19.13).
Здесь я хотел бы немного отклониться от темы и пояснить, почему так получается—отчего в квантовой механике должно быть нечто похожее на (19.15). Волновая функция меняется со временем, следуя уравнению Шредингера (19.3). Если бы я внезапно изменил векторный потенциал, то в первое мгновение волновая функция не изменилась бы, а изменилась бы только скорость ее изменения. Теперь представьте себе, что случится в следующих обстоятельствах. Пусть имеется длинный соленоид, в котором я создаю поток магнитного поля (поля В), как показано на фиг. 19.2.
Фиг. 19.2. Электрическое поле снаружи соленоида, ток в котором увеличивается.
А поблизости сидит заряженная частица. Допустим, что этот поток почти мгновенно с нуля вырастает до какого-то значения. Сперва векторный потенциал равен нулю, а потом я его включаю. Это означает, что я внезапно создаю круговой вектор-потенциал А. Вы помните, что криволинейный интеграл от А вдоль петли это то же самое, что поток поля В сквозь петлю [см. гл. 14, § 1 (вып. 5)]. И что же происходит, когда я мгновенно включаю векторный потенциал? Согласно квантовомеханическому уравнению, внезапное изменение А не вызывает внезапного изменения ψ; волновая функция пока та же самая. Значит, и градиент не изменился.
Но вспомните, что происходит электрически, когда я внезапно включаю поток. В течение краткого времени, пока поток растет, возникает электрическое поле, контурный интеграл от которого равен скорости изменения потока во времени
(19.16)
Если поток резко меняется, то электрическое поле достигает огромной величины и оказывает сильное воздействие на частицу. Эта сила равна произведению заряда на электрическое поле; стало быть, в момент появления потока частица получает полный импульс (т. е. изменение в mv), равный -qА. Иными словами, если вы подействуете на заряд векторным потенциалом, включив его внезапно, то этот заряд немедленно схватит mv-импульс, равный -qА. Но имеется нечто, не меняющееся немедленно,— это разность между mv и -qА. Стало быть, сумма p=mv+qA и есть то, что не меняется, если вы подвергаете вектор-потенциал внезапному изменению. Именно эту величину мы именуем p-импульсом, именно она играет важную роль в классической динамике; она же оказывается существенной и в квантовой механике. Эта величина зависит от характера волновой функции и является преемником оператора
при наличии магнитного поля.
§ 4. Смысл волновой функции
Когда Шредингер впервые открыл свое уравнение, он открыл заодно, что закон сохранения (19.8) есть следствие этого уравнения. Но он неправильно решил, что Р это плотность электрического заряда электрона, а J — плотность электрического тока, т. е. он думал, что электроны взаимодействуют с электромагнитным полем через эти заряды и токи. Решая свои уравнения для атома водорода и вычисляя ψ, он не вычислял никакой амплитуды (в то время еще не было амплитуд), а толковал это совершенно иначе. Атомное ядро было стационарно, вокруг же него текли токи; заряды Р и токи J генерировали электромагнитные поля, и все вместе это излучало свет. Но вскоре, решая задачу за задачей, он понял, что рассуждает не вполне правильно. И именно в этот момент Борн выдвинул весьма нетривиальную идею. Именно Борн правильно (насколько нам известно) отождествил ψ в уравнении Шредингера с амплитудой вероятности, предположив, что квадрат амплитуды — это не плотность заряда, а всего лишь вероятность (на единицу объема) обнаружить там электрон и что если вы находите электрон в некотором месте, то там окажется и весь его заряд. Вся эта идея принадлежит Борну.
Волновая функция ψ(r) электрона в атоме не описывает, стало быть, размазанного электрона с плавно меняющейся плотностью заряда. Электрон может быть либо здесь, либо там, либо где-то еще, но где бы он ни был, он всегда—точечный заряд. Но, с другой стороны, представим себе случай, когда огромное число частиц находится в одном и том же состоянии, очень большое их число с одной и той же волновой функцией. Что тогда? Одна из них будет здесь, другая — там, и вероятность обнаружить любую из них в данном месте пропорциональна ψψ*. Но поскольку частиц так много, то, если я посмотрю в какой-нибудь объем dxdydz, я, вообще говоря, обнаружу там примерно ψψ*dxdydz частиц. Итак, когда ψ— волновая функция каждой из огромного количества частиц, поголовно пребывающих в одном и том же состоянии, то в этом случае ψψ* можно отождествлять с плотностью частиц. Если в этих условиях все частицы несут одинаковые заряды q, то мы можем пойти дальше и отождествить ψ*ψ с плотностью электричества. Обычно, если ψψ* имеет размерность плотности вероятности, то ψψ* надо умножить на q, чтобы получить размерность плотности заряда. Для наших теперешних целей мы можем включить этот постоянный множитель в ψ и принять за плотность электрического заряда само ψψ*. Если помнить об этом, то ^J (тот ток вероятности, который я вычислил) можно будет считать просто плотностью электрического тока.
Итак, когда в одном и том же состоянии может находиться очень много частиц, возможно иное физическое толкование волновых функций. Плотность заряда и электрический ток могут быть вычислены прямо из волновых функций, и волновые функции приобретают физический смысл, который распространяется на классические, макроскопические ситуации.
Нечто подобное может случиться и с нейтральными частицами. Если у нас имеется волновая функция отдельного фотона, то это — амплитуда того, что он будет обнаружен где-то. Хотя мы и не писали его, однако существует уравнение для фотонной волновой функции, аналогичное уравнению Шредингера для электрона. Фотонное уравнение попросту совпадает с уравнениями Максвелла для электромагнитного поля, а волновая функция — с векторным потенциалом А. Волновая функция оказывается обычным векторным потенциалом. Физика квантов света совпадает с классической физикой, потому что фотоны суть невзаимодействующие бозе-частицы и многие из них могут пребывать в одинаковом состоянии; более того, как вы знаете, они любят бывать в одинаковом состоянии. В момент, когда мириады их окажутся в одном и том же состоянии (т. е. в одной и той же электромагнитной волне), вы сможете непосредственно измерить волновую функцию (т. е. векторный потенциал). Конечно, исторически все шло иным путем. Первые наблюдения были проведены при таких обстоятельствах, когда было много фотонов в одинаковом состоянии, и тем самым удалось открыть правильные уравнения для отдельного фотона, наблюдая непосредственно своими глазами природу волновой функции на макроскопическом уровне.
Трудность с электроном состоит в том, что вы не можете поместить в одно и то же состояние больше одного электрона. Поэтому очень долго считалось, что волновая функция уравнения Шредингера никогда не будет иметь макроскопического представления, подобного макроскопическому представлению амплитуды для фотонов. Но теперь стало ясно, что явление сверхпроводимости представляет именно такой случай.
§ 5. Сверхпроводимость
Вы знаете, что очень многие металлы ниже определенной температуры (температура у каждого металла своя) становятся сверхпроводящими[91]. Если вы как следует снизите температуру то металлы начинают проводить электричество без всякого сопротивления. Это явление наблюдалось у очень многих металлов, но не у всех, и теория этого явления причинила немало хлопот. Понадобилось довольно долгое время, чтобы разобраться, что происходит внутри сверхпроводников, и я опишу здесь только то, что будет нужно для наших нынешних целей. Оказывается, что из-за взаимодействия электронов с колебаниями атомов в решетке возникает слабое эффективное притяжение между электронами. Грубо говоря, электроны в итоге взаимодействия образуют связанные пары.
Известно также, что каждый отдельный электрон является ферми-частицей. Но связанная пара уже будет вести себя как бозе-частица, потому что, если я переставляю местами два электрона в паре, я дважды меняю знак волновой функции, а это означает, что я ничего не меняю. Пара является бозе-частицей.
Энергия спаривания (энергия притяжения электронов) очень-очень слаба. Незначительной температуры достаточно, чтобы тепловое возбуждение разбросало электроны и обратило их в «нормальные» электроны. Но если снизить температуру достаточно сильно, то эти электроны сделают все от них зависящее, чтобы прийти в самое наинизшее состояние, и уж тогда-то действительно разберутся попарно.
Мне не хотелось бы, чтобы вы вообразили, будто пары и впрямь скреплены очень тесно, словно точечные частицы. В действительности, именно в этом пункте лежала наибольшая трудность в понимании этого явления на первых порах. Два электрона, образующие пару, в действительности расходятся на заметные расстояния; и среднее расстояние между парами меньше размера отдельной пары. Несколько пар одновременно занимают один и тот же объем. Объяснение причины образования электронами в металле пар и оценка энергии, выделяемой при образовании пар, стало триумфом современной науки. Этот фундаментальный факт в явлении сверхпроводимости впервые разъяснен в теории, созданной Бардином, Купером и Шриффером[92]. Но не это будет темой нашего семинара. Мы попросту примем как данное представление о том, что электроны так или иначе действуют попарно, что можно считать, что эти пары ведут себя более или менее как частицы и что поэтому можно говорить о волновой функции «пары».
Уравнение Шредингера для пары более или менее похоже на (19.3). Единственная разница состоит в том, что заряд q будет удвоенным зарядом электрона. Кроме того, мы не знаем инерции (или эффективной массы) пары в кристаллической решетке, поэтому неизвестно, какое число поставить вместо m. Не следует также считать, что если перейти к очень высоким частотам (или коротким волнам), то форма уравнения останется правильной, ведь кинетическая энергия, которая отвечает очень резко меняющимся волновым функциям, может стать столь большой, что разрушит пары. При конечных температурах в соответствии с теорией Больцмана всегда встречается сколько-то разрушенных пар. Вероятность того, что пара разрушится, пропорциональна ехр(-Eпары/kT). Не связанные попарно электроны называются «нормальными» и движутся по кристаллу обычным образом. Я буду, однако, рассматривать только случай истинно нулевой температуры или, во всяком случае, пренебрегу усложнениями, вызываемыми теми электронами, у которых нет пары.
Раз пары электронов—это бозоны, то когда множество их собирается в одном состоянии, амплитуда перехода других пар в то же состояние становится особенно велика. Значит, почти все пары должны скопиться при наинизшей энергии в точности в одинаковом состоянии, сбежать кому-либо из них в другое состояние очень нелегко. У каждой пары амплитуда того, что она перейдет в занятое состояние в √n раз больше, чем в незанятое (где хорошо известный фактор √n определяется населенностью n наинизшего состояния). Значит, мы вправе ожидать, что все пары будут двигаться в одном состоянии.
Как же тогда будет выглядеть наша теория? Я обозначу через ψ волновую функцию пары в наинизшем энергетическом состоянии. Однако из-за того, что ψψ* окажется пропорциональным плотности заряда ρ, я с равным правом могу записать ψ как квадратный корень из плотности заряда, умноженный на некоторый фазовый множитель
(19.17)
где ρ и θ — действительные функции от r. (В таком виде можно, конечно, записать любую комплексную функцию.) Что мы подразумеваем, говоря о плотности заряда,— это ясно, но каков физический смысл фазы θ волновой функции? Ну что же, давайте поглядим, что получится, если мы подставим ψ(r) в (19.12) и выразим плотность тока через эти новые переменные ρ и θ. Это простая замена переменных, и, не повторяя всех выкладок, я приведу результат:
(19.18)
Поскольку и плотность тока и плотность заряда имеют для сверхпроводящего электронного газа прямой физический смысл, то и ρ и θ — вполне реальные вещи. Фаза столь же наблюдаема, как и ρ: это часть плотности тока J.Абсолютная фаза ненаблюдаема, но если градиент фазы известен во всех точках, то фаза известна с точностью до константы. И если вы определите по своему желанию фазу в одной точке, то во всех остальных точках она уже определится сама собой.
Кстати заметим, что уравнение для тока можно проанализировать и изящнее, если представить себе, что плотность тока и впрямь совпадает с произведением плотности заряда на скорость тока электронной жидкости, т. е. что J=ρv. Тогда (19.18) равнозначно уравнению
(19.19)
Мы замечаем, что в mv-импульсе есть две части: одна связана с векторным потенциалом, а другая с поведением волновой функции. Иными словами, величина ℏ∇θ— это как раз то, что мы называли р-импульсом.
§ 6. Явление Мейсснера
Теперь уже можно кое-что рассказать и о явлении сверхпроводимости. Прежде всего здесь отсутствует электрическое сопротивление. А нет сопротивления оттого, что все электроны коллективно пребывают в одинаковом состоянии. При обычном течении тока то один электрон, то другой выбивается из равномерного потока, постепенно разрушая полный импульс. Здесь же не так-то просто помешать одному электрону делать то, что делают другие, ибо все бозе-частицы стремятся попасть в одинаковое состояние. Ток, если уж он пошел, то это навеки.
Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнитное поле (что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент создания магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток, который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое электрическое поле уже вызовет достаточный ток, чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.
Еще интереснее другое связанное с этим явление, экспериментально обнаруженное Мейсснером[93]. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем снизили температуру ниже критического уровня (когда металл становится сверхпроводником), то поле будет вытолкнуто. Иными словами, в сверхпроводнике возникает свой собственный ток, и как раз в таком количестве, чтобы вытолкнуть поле наружу.
Причину этого можно понять из уравнений, и сейчас я объясню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А равной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от θ должен быть равен нулю. Но погодите, а как же с вариацией ρ? Я забыл упомянуть об одном важном пункте. В металле существует фон положительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда ρ однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу[94]. Значит, в обычных обстоятельствах плотность электронного заряда в сверхпроводниках почти идеально однородна, и я вправе считать ρ постоянным. Далее, единственная возможность, чтобы ∇2θ было равно нулю всюду внутри сплошного куска металла,— это постоянство θ. А это означает, что в J не входит член с р-импульсом. Согласно выражению (19.18), ток пропорционален ρ, умноженному на А. Значит в куске сверхпроводящего материала ток с необходимостью будет пропорционален вектор-потенциалу
(19.20)
Знаки ρ и q одинаковы (отрицательны), и поскольку ρ — величина постоянная, то я могу положить ρq/m=-(некоторая постоянная). Тогда
(19.21)
Это уравнение впервые предложили братья Лондон[95], чтобы объяснить экспериментальные наблюдения над сверхпроводимостью, задолго до того, как люди уяснили себе квантовомеханическое происхождение эффекта.
Мы теперь можем подставить (19.20) в уравнения электромагнетизма и определить поля. Векторный потенциал связан с плотностью тока уравнением
(19.22)
Если вместо J я подставлю (19.21), то получу
(19.23)
где λ2—просто новая постоянная
(19.24)
Теперь можно попробовать решить это уравнение относительно А и детальнее посмотреть, что там происходит. Например, в одномерном случае у (19.23) имеются экспоненциальные решения вида е-λx и е+λх. Эти решения означают, что векторный потенциал обязан экспоненциально убывать по мере удаления от поверхности внутрь образца. (Возрастать он не может — будет взрыв.) Если кусок металла очень велик по сравнению с 1/λ, то поле проникнет внутрь только в тонкий слой у поверхности толщиной около 1/λ. Все остальное место внутри проводника будет свободно от поля, как показано на фиг. 19.3.
Фиг. 19.3. Сверхпроводящий цилиндр в магнитном поле (а) и магнитное поле В как функция от r (б).
Этим и объясняется явление Мейсснера.
Какова же эта «глубина проникновения» 1/λ? Вы помните, что r0 — «электромагнитный радиус» электрона (2,8·10-13см) — выражается формулой
Вы помните также, что q вдвое больше заряда электрона, так что
Записав ρ в виде qeN, где N — число электронов в кубическом сантиметре, мы получим
(19.25)
У такого металла, как свинец, на каждый кубический сантиметр приходится 3·1022 атомов, и если каждый атом снабдит нас одним электроном проводимости, то 1/λ будет порядка 2·10-5см. Это дает вам порядок величины эффекта.
§ 7. Квантование потока
Уравнение Лондонов (19.21) было предложено, чтобы объяснить наблюдавшиеся при сверхпроводимости явления, включая эффект Мейсснера. Однако в последнее время прозвучали и более поразительные предсказания. Одно из предсказаний Лондонов было таким своеобразным, что никто даже не обратил на него особого внимания. Об этом я и расскажу. На сей раз возьмем сверхпроводящее кольцо, толщина которого по сравнению с 1/λ велика, и посмотрим, что случится, если мы сперва наложим на кольцо магнитное поле, затем охладим кольцо до сверхпроводящего состояния, а потом уберем первоначальный источник поля В. Последовательность этих событий изображена на фиг. 19.4.
Фиг. 19,4. Кольцо в магнитном поле. а — в нормальном, состоянии; б — в сверхпроводящем состоянии; в — после того, как внешнее поле убрали.
В нормальном состоянии (фиг. 19.4,а) в теле кольца имеется магнитное поле. Когда кольцо становится сверхпроводящим, поле (как мы уже знаем) выталкивается из вещества кольца. Но тогда, как показано на фиг. 19.4,б, останется некоторый поток поля сквозь отверстие кольца. Если теперь убрать внешнее поле, то те линии поля, которые шли через отверстие, будут «заморожены» (фиг. 19.4,в). Поток Ф через центр сойти на нет не может, потому что ∂Ф/∂t должно быть все время равно контурному интегралу от Е вдоль кольца, а Е внутри сверхпроводника равно нулю. И вот, когда мы убираем внешнее поле, то по кольцу начинает течь сверхпроводящий ток, цель которого — сохранить поток через кольцо неизменным. (Это старая идея о вихревых токах, только с нулевым сопротивлением.) Но все эти токи будут течь только у самой поверхности (на глубине не более 1/λ), что следует из такого же анализа, как и проделанный для сплошного куска. Эти токи в состоянии сделать так, чтобы магнитное поле не попадало внутрь кольца, но зато все время держалось вокруг него.
Но здесь имеется существенное различие, и наши уравнения предсказывают поразительный эффект. Рассуждение о том, что фаза θ в сплошном куске должна быть постоянной, к кольцу неприменимо; в этом вам помогут убедиться следующие рассуждения.
Далеко в глубине тела кольца плотность тока J равна нулю; значит, (19.18) означает, что
(19.26)
Теперь посмотрим, что получится, если мы возьмем контурный интеграл от А по кривой Г, которая проходит по самому центру поперечного сечения кольца, нигде не подходя близко к поверхности (фиг. 19.5).
Фиг. 19.5. Кривая Г внутри сверхпроводникового кольца.
Из (19.26)
(19.27)
Вы знаете, что контурный интеграл от А по любой петле равен потоку В через петлю
Стало быть, уравнение (19.27) превращается в
(19.28)
Криволинейный интеграл от одной точки до другой (скажем, от точки 1 до точки 2) от градиента равен разности значений функции в этих двух точках:
Если начать сближать точки 1 и 2, чтобы петля стала замкнутой, то на первый взгляд могло бы показаться, что θ1 станет равно θ2, так что интеграл в (19.28) обратится в нуль. Так оно и было бы для замкнутых петель в односвязном куске сверхпроводника, но для кольцеобразного куска это не обязательно. Единственное физическое требование, которое мы вправе предъявить, это чтобы в каждой точке волновая функция могла принимать только одно значение. Что бы ни делала фаза θ, когда вы движетесь по кольцу, но когда вы возвращаетесь к начальной точке, фаза θ обязана обеспечить вам прежнее значение волновой функции ψ=√(ρeiθ). Так будет, если θ меняется на 2πn, где n — любое целое число. Итак, если мы делаем один полный оборот вокруг кольца, то левая часть (19.27) должна быть равна ℏ·2πn. Подставляя сюда (19.28), получаем
(19.29)
Захваченный поток всегда обязан быть кратным числу 2πℏ/q! Если бы кольцо было классическим объектом с идеальной (т. е. бесконечной) проводимостью, то можно было бы подумать, что в кольце обязан остаться весь проходивший через него поток, какой бы величины он ни был, т. е. можно заморозить любое количество потока. Но квантовомеханическая теория сверхпроводимости утверждает, что поток может быть либо нулем, либо 2πℏ/q, либо 4πℏ/q, либо 6πℏ/q и т. д., но только не промежуточным числом! Он обязан быть кратным фундаментальной квантовомеханической константе.
Лондон[96] предсказывал, что поток, захватываемый сверхпроводящим кольцом, окажется квантованным и допустимая величина потока будет дана уравнением (19.29), где q=qe— заряду электрона. Согласно Лондону, фундаментальная единица потока должна быть равна 2πℏ/qе, т. е. около 4·10-7гс·см2. Чтобы представить себе эту величину, вообразите тонкий цилиндрик толщиной в одну десятую долю миллиметра; магнитное поле внутри него, если он содержит такую величину потока, составит около одного процента магнитного поля Земли. С помощью чувствительных магнитных измерений такой поток можно зарегистрировать.
В 1961 г. Дивер и Фейрбэнк[97] из Станфордского университета предприняли поиски такого квантованного потока и нашли его; примерно в то же время это проделали Долл и Набауэр[98] в Германии.
В опыте Дивера и Фейрбэнка сверхпроводящий цилиндрик был изготовлен электроосаждением тонкого слоя олова на кусочке медной проволоки диаметром 1,3·10-3см (длиной 1 см). Ниже 3,8° К олово становится сверхпроводящим, а медь остается нормальным металлом. Проволока была помещена в небольшое регулируемое магнитное поле и температура снижалась до тех пор, пока олово не стало сверхпроводником. Затем убрали внешний источник поля. Вы понимаете, что по закону Ленца это вызвало появление тока, стремившегося погасить эффект убывания потока внутри цилиндра. Цилиндрик приобрел магнитный момент, пропорциональный потоку внутри него. Этот магнитный момент измеряли, для чего водили проволочкой вверх и вниз (как иглой в швейной машинке, но со скоростью 100 раз в секунду) внутри пары маленьких катушечек, помещенных у концов оловянного цилиндрика. Мерой магнитного момента было наводимое в катушках напряжение.
Дивер и Фейрбэнк, проделав свой опыт, обнаружили, что поток действительно квантуется, но фундаментальная единица равна половине той, которую предсказал Лондон. Тот же результат получили Долл и Набауэр. Сперва это выглядело очень таинственно[99], но теперь стало ясно, отчего так вышло. Согласно теории сверхпроводимости Бардина, Купера и Шриффера, то q, которое стоит в (19.29), это заряд пары электронов, т. е. равно 2qe. Фундаментальная единица потока равна
(19.30)
т. е. равна половине того, что было предсказано Лондоном. Теперь все сходится, и измерения свидетельствуют о существовании предсказанного чисто квантовомеханического, но крупномасштабного явления.
§ 8. Динамика сверхпроводимости
Эффект Мейсснера и квантование потока подтверждают наши общие представления. Для полноты стоит еще продемонстрировать, как с этой точки зрения выглядели бы полные уравнения сверхпроводящей жидкости,— получается довольно интересно. До сих пор я подставлял выражение для ψ только в уравнения плотности заряда и тока. Но если я их подставлю в полное уравнение Шредингера, то получу уравнения для ρ и θ. Интересно поглядеть, что из этого выйдет, потому что перед нами сейчас «жидкость» электронных пар с плотностью заряда ρ и с таинственной θ; мы можем посмотреть, как выглядят уравнения такой «жидкости»! Итак, подставим волновую функцию (19.17) в уравнение Шредингера (19.3) и вспомним, что ρ и θ это вещественные функции от х, у и z. Если мы отделим вещественную часть от мнимой, то уравнений станет два. Чтобы запись была короче, я, следуя уравнению (19.19), напишу
(19.31)
Тогда одно из двух уравнений примет вид
(19.32)
Поскольку ρv это и есть J [см. (19.18)], то мы просто еще раз получили уравнение непрерывности. Второе же уравнение говорит об изменении θ:
(19.33)
Те из вас, кто хорошо знаком с гидродинамикой (думаю, очень немногие), в этом уравнении узнают уравнение движения электрически заряженной жидкости, если только отождествить ℏθ с «потенциалом скоростей»; но только в последнем члене, который должен быть энергией сжатия жидкости, имеется довольно странная зависимость от плотности ρ. Во всяком случае, это уравнение утверждает, что скорость изменения величины ℏθ дается членом с кинетической энергией (m/2)v2 плюс член с потенциальной энергий qφ плюс добавочный член с множителем ℏ2, который мы назовем «квантовомеханической энергией». Мы видели, что внутри сверхпроводника электростатические силы поддерживают ρ очень однородным, поэтому во всех практических применениях этим членом почти наверняка можно пренебречь при условии, что имеется только одна сверхпроводящая область. Если между двумя сверхпроводниками имеется граница (или есть другие обстоятельства, за счет которых ρ может начать резко меняться), то этот член может стать существенным. Для тех, кто не так уж знаком с уравнениями гидродинамики, я попробую переписать (19.33) в том виде, который позволит яснее видеть физику. Я использую (19.31), чтобы θ выразить через v. Беря от всего уравнения (19.33) градиент и выражая с помощью (19.31) ∇θ через А и v, я получу
(19.34)
Что же означает это уравнение? Вспомним, во-первых, что
(19.35)
Затем заметим, что если взять ротор от уравнения (19.19), то получится
(19.36)
поскольку ротор градиента всегда нуль. Но ∇×A — это магнитное поле В, так что два первых члена можно записать в виде
Наконец, вы должны уяснить себе, что ∂v/∂t обозначает скорость изменения скорости жидкости в данной точке. Если же вас интересует отдельная частица, то ее ускорение выразится полной производной от v (или, как иногда говорят в динамике жидкостей, «сопутствующим ускорением»), связанной с ∂v/∂t формулой [см. гл. 40, § 2 (вып. 7)]
(19.37)
В правой части (19.34) стоит тот же член (v·∇)v. Если перенести его влево, то (19.34) перепишется так:
(19.380
Затем из (19.36) следует
(19.39)
Это и есть уравнения движения сверхпроводящей электронной жидкости. Первое уравнение — это просто закон Ньютона для заряженной жидкости в электромагнитном поле. Оно утверждает, что ускорение каждой частицы жидкости с зарядом q вызывается действием обычной лоренцевой силы q(E+v×B) плюс добавочная сила, являющаяся градиентом какого-то таинственного квантовомеханического потенциала; эта сила обычно мала и становится заметной только при соприкосновении двух разных сверхпроводников. Второе уравнение утверждает, что жидкость «идеальна» — ротор обладает нулевой дивергенцией (у В дивергенция всегда нуль). Это означает, что скорость может быть выражена через потенциал скоростей. Обычно для идеальной жидкости пишут ∇×v=0, но для идеальной заряженной жидкости в магнитном поле это уравнение обращается в (19.39).
Итак, уравнение Шредингера для электронных пар в сверхпроводнике дает нам уравнения движения электрически заряженной идеальной жидкости. Теория сверхпроводимости совпадает с задачей гидродинамики заряженной жидкости. Если вы хотите решить какую-либо задачу, касающуюся сверхпроводников, вы берете эти уравнения для жидкости [или равноценную им пару (19.32) и (19.33)] и сочетаете их с уравнениями Максвелла, чтобы получить поля. (Заряды и токи, которыми вы пользуетесь, чтобы узнать поля, должны, естественно, включать как заряды и токи от сверхпроводника, так заряды и токи от внешних источников.)
Кстати, я считаю, что уравнение (19.38) не очень-то правильно, в него следует добавить член с плотностью. Он определяется не квантовой механикой, а вытекает из обычной энергии, связанной с вариациями плотности, так же как в уравнении для обычной жидкости должна стоять плотность потенциальной энергии, пропорциональная квадрату отклонения ρ от ρ0 (невозмущенной плотности, которая в нашем случае равна также плотности заряда кристаллической решетки). Поскольку должны наблюдаться силы, пропорциональные градиенту этой энергии, то в (19.38) обязан стоять еще один член, пропорциональный ∇(ρ-ρ0)2. В нашем анализе он не появился, потому что возникает он от взаимодействия между частицами, которым я, применяя приближение независимых частиц, пренебрег. Но это та самая сила, на которую я сослался, когда делал качественное утверждение о том, что электростатические силы стремятся сохранить ρ вдоль сверхпроводника почти неизменным.
§ 9. Переходы Джозефсона
И вот напоследок я перехожу к разбору очень интересного случая, впервые отмеченного Джозефсоном[100], к анализу того, что бывает при контакте двух сверхпроводников. Пусть у нас есть два сверхпроводника, связанные тонким слоем изолятора (фиг. 19.6).
Фиг. 19.6. Два сверхпроводника, разделенных тонким изолятором.
Теперь такое устройство называется «переходом Джозефсона». Если изолирующий слой толст, электроны не могут пройти через него, но если он достаточно тонок, то электроны могут иметь заметную квантовомеханическую амплитуду перескока. Это попросту новый пример квантовомеханического проникновения через барьер. Джозефсон проанализировал такой случай и выяснил, что при этом должно происходить немало странных явлений.
Для анализа такого контакта я обозначу амплитуду того, что электрон окажется на одной стороне, через ψ1, а того, что на другой,— через ψ2. В сверхпроводящем состоянии волновая функция ψ1 — это общая волновая функция всех электронов с одной стороны, а ψ2 — соответствующая функция с другой стороны. Эту задачу можно решать для сверхпроводников разного сорта, но мы ограничимся самым простым случаем, когда вещество по обе стороны одно и то же, — так что соединение самое простое и симметричное. И пусть пока никакого магнитного поля нет. Тогда связь между этими двумя амплитудами должна быть такой:
Постоянная К характеризует данный переход. Если бы К была равна нулю, то эта пара уравнений попросту описывала бы наинизшее энергетическое состояние (с энергией U) каждого сверхпроводника. Но обе стороны связаны амплитудой К, выражающей возможность утечки из одной стороны в другую (это как раз известная нам по двухуровневым системам амплитуда «переброса»). Если обе стороны одинаковы, то U1 будет равно U2, и я имею право их просто вычесть. Но теперь предположим, что мы подсоединили две сверхпроводящие области к двум полюсам батарейки, так что к переходу оказалась приложенной разность потенциалов V. Тогда U1-U2=qV. Для удобства я могу выбрать нуль энергии посредине между U1 и U2, и тогда уравнения обратятся в
(19.40)
Это стандартные уравнения двух связанных квантовомеханических состояний. На этот раз давайте проанализируем их по-иному. Сделаем подстановки:
(19.41)
где θ1 и θ2— фазы по обе стороны контакта, а ρ1 и ρ2— плотности электронов в этих двух точках. Вспомним, что на практике ρ1 и ρ2 почти точно совпадают друг с другом и равны ρ0 — нормальной плотности электронов в сверхпроводящем материале. Если вы теперь подставите эти формулы для ψ1 и ψ2 в (19.40) и приравняете вещественные части вещественным, а мнимые — мнимым, то получится четверка уравнений (для краткости обозначено θ2-θ1=δ):
(19.42)
(19.43)
Первая пара уравнений говорит, что ρ1=-ρ2 «Но,— скажете вы,— они ведь обе должны быть равны нулю, раз ρ1 и ρ2 обе постоянны и равны ρ0». Не совсем. Эти уравнения описывают не все. Они говорят, какими были бы ρ1 и ρ2, если бы не было добавочных электрических сил за счет того, что нет баланса между электронной жидкостью и фоном положительных ионов. Они сообщают, как начали бы меняться плотности, и поэтому описывают тот ток, который начал бы течь. Этот ток, текущий от стороны 1 к стороне 2, был бы как раз равен ρ1 (или -ρ2), или
(19.44)
Такой ток вскоре зарядил бы сторону 2, если можно было бы забыть, что обе стороны соединены проводами с батареей. Однако он не зарядит область 2 (и не разрядит область 1), потому что возникнут токи, которые выровняют потенциал. В наши уравнения эти токи от батареи не входят. Если бы их добавить, то ρ1 и ρ2 оставались бы фактически постоянными, а ток через переход определялся бы формулой (19.44).
Поскольку ρ1 и ρ2 действительно остаются постоянными и равными ρ0, давайте положим 2Kρ0/ℏ=J0 и напишем
(19.45)
Тогда J0, подобно К, есть число, характеризующее данный переход.
Другая пара уравнений (19.43) дает нам θ1 и θ2. Нас интересует разность δ=θ2-θ1, которую мы хотим подставить в (19.45); из уравнений же мы имеем
(19.46)
Это значит, что можно написать
(19.47)
где δ0 — значение δ при t=0. Не забывайте также, что q — это заряд пары, q=2qe. В уравнениях (19.45) и (19.47) содержится важный результат — общая теория переходов Джозефсона.
Так что же из них следует? Сначала приложим постоянное напряжение. Если приложить постоянное напряжение V0, то аргумент синуса примет вид δ0+(q/ℏ)V0t. Поскольку ℏ/q—число маленькое (по сравнению с обычными напряжениями и временами), то синус будет колебаться довольно быстро и в итоге никакой ток не пойдет. (Практически, поскольку температура не равна нулю, небольшой ток все же будет из-за проводимости «нормальных» электронов.) С другой стороны, если напряжение на переходе равно нулю, то ток может пойти! Если нет напряжения, то ток может равняться любой величине между +J0 и -J0 (в зависимости от того, каково значение δ0). Но попробуйте приложить напряжение — и ток обратится в нуль. Это странное поведение недавно наблюдалось экспериментально[101].
Ток можно получить и другим способом: кроме постоянного напряжения — приложить еще и высокую частоту. Пусть
где v≪V. Тогда
Но при малых Δx
Разложив по этому правилу sinδ, я получу
Первый член в среднем дает нуль, но второй в нуль не обращается, если
Значит, если частота переменного напряжения равна (q/ℏ)V0, то через контакт пойдет ток. Шапиро[102] сообщил, что он наблюдал такой резонансный эффект.
Если вы просмотрите работы на эту тему, то заметите, что в них формула для тока часто записывается в виде
(19.48)
где интеграл берется по пути, ведущему через переход. Причина здесь в том, что если переход находится в поле векторного потенциала, то фаза амплитуды переброса видоизменяется так, как было объяснено вначале [уравнение (19.1)]. Если вы всюду включите такой сдвиг фазы, то получите нужные формулы.
Наконец, я хотел бы описать очень эффектный и интересный опыт по интерференции токов, проходящих через два перехода, который был недавно проделан. Мы привыкли встречаться в квантовой механике с интерференцией амплитуд от двух щелей. Сейчас мы будем иметь дело с интерференцией двух токов, текущих через два перехода между сверхпроводниками. Она вызывается различием в фазах, с которыми сливаются токи, прошедшие по двум разным путям. На фиг. 19.7 показано параллельное соединение двух переходов а и b между сверхпроводниками.
Фиг. 19.7. Два параллельных перехода Джозефсона.
Концы сверхпроводников Р и Q подключены к приборам, которыми мы измеряем ток. Внешний ток Jполн будет суммой токов через каждый из переходов. Пусть Ja и Jb это токи через переходы, и пусть их фазы будут δа и δb. Разность фаз волновых функций в точках Р и Q должна быть одинаковой, по какому бы пути вы ни пошли. На том пути, который следует через переход а, разность фаз между Р и Q равна δа плюс криволинейный интеграл от векторного потенциала вдоль верхнего пути:
(19.49)
Почему? Потому что фаза θ связана с А уравнением (19.26). Если вы это уравнение проинтегрируете вдоль какого-то пути, то левая часть даст изменение фазы, которое тем самым как раз окажется пропорциональным криволинейному интегралу от А, что и написано. Изменение фазы по нижнему пути может быть записано подобным же образом:
(19.50)
Эти величины должны быть равны; если я их вычту, то получу, что разность дельт должна быть равна контурному интегралу от А по замкнутому пути
Здесь интеграл берется по замкнутому контуру Г (см. фиг. 19.7), проходящему через оба перехода. Интеграл от А это магнитный поток Ф через контур. Итак, две дельты оказываются отличающимися на 2qe/ℏ, умноженное на магнитный поток Ф, который проходит между двумя ветвями схемы:
(19.51)
Изменяя магнитное поле в схеме, я смогу контролировать эту разность фаз. Я ее прилажу так, чтобы посмотреть, проявится ли в полном токе, текущем сквозь оба перехода, интерференция между его частями. Полный ток равен сумме Ja и Jb. Для удобства я приму
Тогда
(19.52)
Мы не знаем, каково значение δ0, и природа здесь может, в зависимости от обстоятельств, вытворять все, что ей заблагорассудится. В частности, δ0 может зависеть от прилагаемого к переходам внешнего напряжения. Но что бы мы ни делали, sinδ0 не окажется больше единицы. Значит, предельно сильный ток для каждого данного Ф дается формулой
Этот предельный ток меняется, смотря по тому, каково Ф, и сам достигает максимума всякий раз, когда
где n — целое число. Иными словами, ток достигает своего максимума, когда зацепляющийся за схему поток принимает те самые квантованные значения, которые мы получили в уравнении (19.30)!
Ток Джозефсона через двойной переход недавно был измерен[103] как функция магнитного поля в области между ветвями. Результаты приведены на фиг. 19.8.
Фиг. 19.8. Запись тока через два параллельных перехода Джозефсона как функции магнитного поля в области между двумя переходами.
Здесь мы видим общий фон от токов, вызываемых различными эффектами, которыми мы пренебрегли, но быстрые колебания тока при изменении магнитного поля объясняются наличием интерференционного члена cos(qeФ/ℏ) в (19.52).
Один из самых интригующих вопросов квантовой механики— это вопрос о том, существует ли векторный потенциал в том месте, где нет поля[104]. Опыт, который я только что описал, был проделан тоже с узеньким соленоидом, помещенным между двумя переходами, так что заметное магнитное поле В было только внутри соленоида, а на сверхпроводящие провода его попадало пренебрежимо мало. И вот оказалось, что сила тока колеблется с изменением потока магнитного поля внутри этого соленоида, даже если само поле и не касается проводов. Это еще одно доказательство «физической реальности» векторного потенциала [см. гл. 15, § 5 (вып. 6)].
Я не знаю, что теперь на очереди. Но посмотрите-ка, что можно было бы сделать. Во-первых, заметьте, что интерференция между двумя переходами может быть применена для создания чувствительного магнитометра. Если площадь, охватываемая двумя переходами, равна, скажем, 1 мм2, то максимумы на кривой фиг. 19.8 будут отстоять друг от друга на 2·10-5гс. Одну десятую промежутка между пиками запросто можно заметить; значит, таким соединением можно будет измерять поля величиной в 2·10-6гс, или замерять большие поля со столь же хорошей точностью. Можно даже пойти дальше. Представим, например, что мы вплотную друг к другу на равных расстояниях расставили 10—20 переходов. Тогда получится интерференция на 10—20 щелях, и при изменении магнитного поля мы получим очень резкие максимумы и минимумы. Вместо интерференции на двух щелях у нас будет двадцати-, а может быть, и стощелевой интерферометр для измерения магнитного поля. Вероятно, можно предсказать, что измерения магнитных полей при использовании квантовомеханической интерференции станут почти такими же точными, как измерения длин световых волн.
Это еще одна иллюстрация к тому, что происходит в физике в последнее время — появление транзистора, лазера, а теперь эти переходы сверхпроводников, практическое значение которых пока еще не раскрыто полностью. Квантовая механика, открытая в 1926 г., имела за своими плечами почти 40 лет развития, когда вдруг внезапно она получила множество реальных практических применений. Как-то сразу появилась возможность крайне деликатно и тонко управлять природой.
И должен вам сообщить, джентльмены, как это ни прискорбно, что для того, чтобы принять в этом участие, вам абсолютно необходимо как можно быстрее изучить квантовую механику. В этом курсе мы попытались отыскать путь, на котором тайны этой области физики стали бы вам понятными как можно раньше.