Том 3. Квантовая механика — страница 4 из 20

[11]

§ 1. Преобразование амплитуд

В предыдущей главе мы, пользуясь в качестве примера системой со спином 1, набросали общие принципы квантовой механики.

Любое состояние ψ можно описать через совокупность базисных состояний, задав амплитуды пребывания в каждом из них.

Амплитуда перехода из одного состояния в другое может быть в общем случае записана в виде суммы произведений амплитуд перехода в одно из базисных состояний на амплитуды перехода из этих базисных состояний в конечное положение; в сумму непременно входят члены, относящиеся к каждому базисному состоянию:

(4.1)

Базисные состояния ортогональны друг другу — амплитуда пребывания в одном, если вы находитесь в другом, есть нуль:

(4.2)

Амплитуда перехода из одного состояния в другое комплексно сопряжена амплитуде обратного перехода

(4.3)

Мы немного поговорили о том, что базис для состояний может быть не один и что можно использовать (4.1), чтобы перейти от одного базиса к другому. Пусть, например, мы знаем амплитуды <iS|ψ> обнаружения состояния ψ в любом из базисных состояний i базисной системы S, но затем решаем, что лучше описывать состояние в терминах другой совокупности базисных состояний — скажем, состояний j, принадлежащих к базису Т. Мы тогда можем подставить в общую формулу (4.1) jT вместо χ и получить

(4.4)

Амплитуды обнаружения состояния (ψ) в базисных состояниях () связаны с амплитудами его обнаружения в базисных состояниях (iS) совокупностью коэффициентов <jT|iS>. Если базисных состояний N, то таких коэффициентов всего N2. Эту совокупность коэффициентов часто называют «матрицей преобразования от представления S к представлению Т». Математически это выглядит страшновато, но стоит все чуть обозначить иначе и оказывается, что ничего страшного нет. Если обозначить через Сi амплитуду того, что состояние ψ находится в базисном состоянии iS, т. е. Ci=<iS|ψ>, а через C'j назвать соответствующие амплитуды для базисной системы Т, т. е. Сj=<jT|ψ>, то (4.4) можно записать в виде

(4.5)

где Rji — то же самое, что и <jT|iS>. Каждая амплитуда Cj есть сумма по всем i одного ряда коэффициентов Rji, умноженных на каждую амплитуду Сi. Это выглядит так же, как преобразование вектора от одной системы координат к другой.

Но не будем слишком долго увлекаться абстракцией. Мы уже приводили парочку примеров этих коэффициентов для случая спина 1, и вы сами можете разобраться, как ими пользоваться практически. Но, с другой стороны, у квантовой механики существует очень красивое качество: из того факта, что состояний только три, используя лишь свойства симметрии пространства относительно вращений, она умеет чисто отвлеченным путем вычислить эти коэффициенты. Приводить на столь ранней стадии эти рассуждения было бы нехорошо: прежде чем вы «вернулись бы на землю», вы могли бы утонуть в новом море абстракций. Однако все это так красиво, что мы в свое время это непременно проделаем.

В этой же главе мы покажем вам, как можно получить коэффициенты преобразований для частиц со спином 1/2. Мы выбрали этот случай потому, что он проще спина 1. Задача состоит в том, чтобы определить коэффициенты Rji для частицы, или атомной системы, которая в аппарате Штерна—Герлаха расщепляется на два пучка. Мы собираемся вывести все коэффициенты для преобразования от одного представления к другому путем чистого рассуждения плюс несколько предположений. Какие-то предположения всегда нужны для того, чтобы пользоваться «чистыми» рассуждениями! Хотя наши доказательства будут абстрактными и немного запутанными, результат, который мы получим, сформулировать легко и понять просто; сам же по себе он будет очень важным. Можете, если угодно, рассматривать это как своего рода культмероприятие. Мы ведь условились уже, что все существенное, выведенное здесь, будет также выводиться по мере надобности в следующих главах другим путем. Так что вы не бойтесь потерять нить нашего изложения квантовой механики, если полностью пропустите эту главу или изучите ее попозже. Мероприятие «культурное» в том смысле, что оно должно показать вам, что принципы квантовой механики не только любопытны, но и настолько глубоки, что, прибавив к ним всего несколько добавочных гипотез о структуре пространства, мы сможем вывести огромное множество свойств физических систем. Кроме того, важно понимать, откуда вытекают различные следствия квантовой механики. Пока наши законы физики неполны (а так оно и есть на самом деле), всегда интересно выяснить, в каких местах наши теории перестают согласовываться с опытом — там ли, где наша логика самая лучшая, или же там, где она наихудшая. До сих пор оказывалось, что там, где наша логика наиболее абстрактна, там она всегда дает правильные результаты — теория согласуется с опытом. Только тогда, когда мы пытаемся строить конкретные модели внутреннего устройства элементарных частиц и их взаимодействий, только тогда мы оказываемся не в состоянии найти теорию, согласную с экспериментом. Та теория, которую мы намерены описать здесь, согласуется с опытом всюду, где ее испытывали; она так же хороша для странных частиц, как и для электронов, протонов и т. д.

Еще одно неприятное (но важное) замечание: коэффициенты Rji невозможно определить однозначно, потому что в амплитудах вероятностей всегда есть какой-то произвол. Если у вас есть ряд каких угодно амплитуд, скажем амплитуд прихода в некоторое место по целому множеству различных путей, и если вы помножите каждую отдельную амплитуду на один и тот же фазовый множитель, скажем на е, то получится другая совокупность, которая будет ничуть не хуже первой. Значит, всегда можно произвольно изменить фазу всех амплитуд в любой задаче, если вы этого захотите.

Допустим, вы вычисляете некоторую вероятность, беря сумму нескольких амплитуд, скажем (А+В+С+...), и возводя ее модуль в квадрат. Затем кто-то другой вычисляет то же самое, складывая амплитуды (А'+В'+С'+...) и возводя их модуль в квадрат. Если все А', В', С' и т. д. отличаются от А, В, С и т. д. только множителем е, то все вероятности, получаемые возведением модуля в квадрат, окажутся в точности одинаковыми, потому что тогда (А'+В'+С+...) равно e(А+В+С+...). Или допустим, к примеру, что мы считали что-нибудь по уравнению (4.1), но затем внезапно изменили все фазы определенной базисной системы. Каждую из амплитуд <i|ψ> тогда пришлось бы умножить на один и тот же множитель еiδ. Точно так же изменились бы в eiδ раз и все амплитуды , но амплитуды <χ|i> комплексно сопряжены амплитудам <i|χ>; тем самым они приобрели бы множитель е-iδ. Плюс и минус iδ в экспонентах уничтожатся, и получится то же выражение, что было и раньше. Стало быть, общее правило таково, что изменение на одну и ту же фазу всех амплитуд по отношению к данной базисной системе или даже простое изменение всех амплитуд в любой задаче на одну и ту же фазу ничего не меняет. Значит, существует некоторая свобода в выборе фаз нашей матрицы преобразования. Мы то и дело будем прибегать к такому произвольному выбору, всегда следуя общепринятым соглашениям.

§ 2. Преобразование к повернутой системе координат

Рассмотрим опять «усовершенствованный» прибор Штерна— Герлаха, описанный в предыдущей главе. Пучок частиц со спином 1/2, входящих слева, расщепляется, вообще говоря, на два пучка, как показано схематически на фиг. 4.1.

Фиг. 4.1. «Усовершенствованный» прибор Штерна—Герлаха с пучками частиц со спином1/2.


(При спине 1 пучков было три.) Как и раньше, пучки в конце снова сводятся в одно место, если только один из них не будет перекрыт «перегородкой», которая перехватит его на полпути. На рисунке имеется стрелка, которая показывает направление роста величины поля, скажем положение магнитного полюса с острым наконечником. Эта стрелка пусть будет представлять собой направление вверх для данного прибора. В каждом аппарате ее положение фиксировано, что позволяет указывать взаимную ориентацию нескольких приборов относительно друг друга. Наконец, предположим еще, что направление магнитного поля относительно стрелки во всех магнитах одинаково.

Будем говорить, что атомы из «верхнего» пучка находятся по отношению к этому прибору в состоянии (+), атомы из «нижнего» — в состоянии (-). (Нуль-состояния для спина 1/2 не существует.)

Положим теперь, что мы поставили два наших усовершенствованных прибора Штерна—Герлаха один за другим фиг. 4.2, а).

Фиг. 4.2. Два эквивалентных эксперимента.


Первый (назовем его S) можно употребить на то, чтобы приготовлять чистое состояние (+S) или (-S), загораживая то один, то другой пучок. [На рисунке приготовляется чистое состояние (+S).] При любом расположении всегда есть некоторая амплитуда того, что частица, выходящая из S, окажется в пучке (+Т) или (-Т) второго прибора. Всего таких амплитуд четыре: амплитуды перехода от (+S) к (+T), от (+S) к (-Т), от (-S) к (+Т) и от (-S) к (-T). Эти амплитуды — просто четыре коэффициента матрицы преобразования Rji перехода от представления S к представлению Т. Можно считать, что первый прибор «приготовляет» определенное состояние в одном представлении, а второй «анализирует» это состояние в терминах второго представления. Мы хотим научиться отвечать на такие вопросы: если, загородив один из пучков в S, мы приготовили атом в данном состоянии, например в состоянии (+S), то каково будет изменение, которое он испытает, пройдя через прибор Т, который настроен на состояние (-T)? Результат, конечно, будет зависеть от углов между системами S и Т.

Мы должны объяснить, почему есть надежда найти коэффициенты Rji теоретически. Почти невозможно поверить, что если у частиц спин был выстроен в направлении +z, то есть хоть какой-то шанс обнаружить, что ее спин ориентирован в направлении +x или в каком-либо другом направлении. Это действительно почти невозможно. Но все же не совсем. Это настолько невозможно, что остается лишь один путь, каким это происходит, а если этот путь один, то его уже можно найти.

Первое рассуждение можно провести так. Предположим, что, как показано на фиг. 4.2, а, прибор Т направлен вверх под углом а относительно S. Пусть через S проходит только пучок (+), а через Т — только пучок (-). Мы измерили некоторую вероятность того, что частицы, выходя из S, пройдут сквозь Т. Теперь предположим, что мы делаем второе измерение прибором, показанным на фиг. 4.2, б. Относительная ориентация S и Т одинакова, но вся система расположена в пространстве под другим углом. Мы хотим предположить, что оба опыта приведут к одному и тому же значению вероятности того, что частица в чистом состоянии относительно S окажется в некотором определенном состоянии относительно Т. Иными словами, мы предполагаем, что результат любого опыта такого рода одинаков, что сама физика одинакова, как бы весь прибор ни был ориентирован в пространстве. (Вы скажете: «Это самоочевидно». Но это все же только предположение, и оно «правильно» только тогда, если так действительно бывает.) Это означает, что коэффициенты Rji зависят лишь от взаимного расположения S и Т в пространстве, а не от абсолютного их расположения. Выражаясь иначе, Rji зависит только от поворота, который переводит S в Т, потому что общим для фиг. 4.2, а и б, очевидно, является трехмерный поворот, переводящий прибор S в положение прибора Т. Когда матрица преобразования Rji зависит, как в нашем случае, только от поворота, ее называют матрицей поворота.

Для следующего шага нужно еще немного информации. Пусть мы добавили третий прибор (назовем его U), стоящий вслед за Т под каким-то произвольным углом (фиг. 4.3, а).

Фиг. 4.3. Если Т «открыт до отказа», то б эквивалентно а.


(Все это начинает выглядеть устрашающе, но в этом-то и прелесть отвлеченного мышления: самые сверхъестественные опыты можно ставить, просто проводя новые линии!) Что же представляет собой преобразование SТU? Фактически нас интересует амплитуда перехода из некоторого состояния по отношению к S к некоторому другому состоянию по отношению к U, если известны преобразования от S к Т и от Т к U. Поинтересуемся сперва опытом, в котором в Т открыты оба канала. Ответ можно получить, дважды подряд применяя (4.5). Для перехода от S-представления к T-представлению имеем

(4.6)

где верхние индексы TS нужны, чтобы отличать это R от RUT, когда мы будем переходить от Т к U.

Обозначая амплитуды появления атома в базисных состояниях представления U через C"k, можно связать их с T-амплитудами, применяя (4.5) еще раз; получим

(4.7)

Теперь можно из (4.6) и (4.7) получить преобразование от S прямо к U. Подставляя С'j из (4.6) в (4.7), имеем

(4.8)

Или, поскольку в RUTkj отсутствует i, можно поставить суммирование по i впереди и написать

(4.9)

Это и есть формула двойного преобразования.

Заметьте, однако, что, пока пучки в Т не загораживаются, состояния на выходе из Т те же, что и при входе в него. Мы могли бы с равным успехом делать преобразования из S-представления прямо в представление U. Это значило бы, что прибор U поставлен прямо за S, как на фиг. 4.3, б. В этом случае мы бы написали

где RUSki — коэффициенты, принадлежащие этому преобразованию. Но ясно, что (4.9) и (4.10) должны приводить к одинаковым амплитудам С"k, причем независимо от того, каково было то начальное состояние φ, которое снабдило нас амплитудами Сi. Значит, должно быть

(4.11)

Иными словами, для любого поворота SU базиса, если рассматривать его как два последовательных поворота SТ и ТU, можно получить матрицу поворота RUSki из матриц двух частных поворотов при помощи формулы (4.11). Если угодно, (4.11) следует прямо из (4.1) и представляет собой лишь другую запись формулы:

* * *

Для полноты добавим еще следующее. Но не думайте, что это будет что-то страшно важное; если хотите, переходите, не читая, прямо к следующему параграфу. Надо сознаться, что то, что мы сказали, не совсем верно. Мы не можем на самом деле утверждать, что (4.9) и (4.10) обязаны привести к абсолютно одинаковым амплитудам. Одинаковыми должны оказаться только физические результаты; сами же амплитуды могут отличаться на общий фазовый множитель типа e, не меняя результатов никаких расчетов, касающихся реального мира. Иначе говоря, вместо (4.11) единственное, что можно утверждать, — это

(4.12)

где δ — какая-то вещественная постоянная величина. Смысл этого добавочного множителя е, конечно, в том, что амплитуды, которые мы получим, пользуясь матрицей RUS, могут все отличаться на одну и ту же фазу (е-iδ) от амплитуд, которые получились бы из двух поворотов RUT и RTS. Но мы знаем, что если все амплитуды изменить на одинаковую фазу, то это ни на чем не скажется. Так что при желании можно этот фазовый множитель просто игнорировать. Оказывается, однако, что если определить нашу матрицу поворота особым образом, то этот фазовый множитель вообще не появится: δ в (4.12) всегда будет нулем. Хотя это и не отражается на наших дальнейших рассуждениях, мы беремся это быстро доказать, пользуясь математической теоремой о детерминантах. [А если вы до сих пор мало знакомы с детерминантами, то не следите за доказательством и прямо переходите к определению (4.15).]

Во-первых, следует напомнить, что (4.11) — это математическое определение «произведения» двух матриц. (Просто очень удобно говорить «RUS есть произведение RUT и RTS».) Во-вторых, существует математическая теорема (которую для используемых здесь матриц 2×2 вы легко докажете), утверждающая, что детерминант «произведения» двух матриц есть произведение их детерминантов. Применив эту теорему к (4.12), получим

(4.13)

(Мы отбрасываем нижние индексы, они здесь ничего полезного нам не сообщают.) Да, слева стоит 2δ! Вспомните, что мы имеем дело с матрицами 2x2; каждый член в матрице RUSki умножен на еiδ, а каждый член в детерминанте (состоящий из двух множителей) получается умножением на еi. Извлечем из (4.13) корень и разделим на него (4.12):

(4.14)

Добавочный фазовый множитель исчез.

Дальше оказывается, что если мы хотим, чтобы все наши амплитуды в любом заданном представлении были нормированы (а это, как вы помните, означает, что ∑i<φ|i>=1, то у всех матриц поворота детерминанты окажутся чисто мнимыми экспонентами, наподобие еiα. (Мы не будем этого доказывать; вы сами потом увидите, что это всегда так.) Значит, мы сможем, если захотим, выбрать все наши матрицы поворота R так, чтобы фаза их получалась однозначно, взяв DetR=1. Это будет делаться так. Пусть мы каким-то произвольным образом определили матрицу поворота R. Возьмем за правило «приводить» ее к «стандартной форме», определяя

(4.15)

Для получения однозначных фаз мы просто умножаем каждый член в R на один и тот же фазовый множитель. В дальнейшем мы будем всегда предполагать, что наши матрицы были приведены к «стандартной форме»; тогда мы сможем пользоваться прямо формулой (4.11) без каких-либо добавочных фазовых множителей.

§ 3. Повороты вокруг оси z

Теперь мы уже подготовлены к тому, чтобы отыскать матрицу преобразования Rji, связывающую два разных представления. Владея нашим правилом объединения поворотов и нашим предположением, что в пространстве нет предпочтительного направления, мы владеем ключом для отыскания матрицы любого произвольного поворота. Решение здесь только одно. Начнем с преобразования, которое отвечает повороту вокруг оси z. Пусть имеются два прибора S и Т, поставленных друг за другом вдоль одной прямой; оси их параллельны и смотрят из страницы на вас (фиг. 4.4, а).

Фиг. 4.4. Поворот на 90° вокруг оси z.


Это их направление мы примем за ось z. Ясно, что если пучок в приборе S идет вверх (к +z), то то же будет и в аппарате Т. Точно так же, если он в S идет вниз, то и в Т он направится вниз. Положим, однако, что прибор Т был повернут на какой-то угол, но его ось, как и прежде, параллельна оси прибора S, как на фиг. 4.4, б. Интуитивно хочется сказать, что пучок (+) в S будет по-прежнему переходить в пучок (+) в Т, потому что и поля, и их градиенты характеризуются тем же физическим направлением. И это вполне правильно. Точно так же и пучок (-) в S будет переходить в пучок (-) в Т. Тот же результат применим для любой ориентации Т в плоскости ху прибора S. Что же отсюда следует для связи между С'+=<+T|ψ>, С'-=<-T|ψ> и С+=<+S|ψ>, С-=<-S |ψ>? Можно подумать, что любой поворот вокруг оси z «системы отсчета» базисных состояний оставляет амплитуды С± пребывания «вверху» и «внизу» теми же, что и раньше, и написать С'+=С+ и С'-=С-. Но это неверно. Все, что можно отсюда заключить, — это, что при таких поворотах вероятности оказаться в «верхнем» пучке приборов S и Т одинаковы, т. е.

Но мы не вправе утверждать, что фазы амплитуд, относящихся к прибору Т, не могут в двух различных ориентациях а и б (фиг. 4.4) различаться.

Пары приборов, показанных на фиг. 4.4, на самом деле отличаются друг от друга, в чем можно убедиться следующим образом. Предположим, что мы перед прибором S поставили другой, создающий чистое (+x)-состояние. (Ось х направлена на рисунке вниз.) Эти частицы расщеплялись бы в S на пучки (+z) и (-z), но на выходе S (в точке Р1) оба пучка снова соединялись бы и восстанавливали состояние (+х). Затем то же самое происходило бы в Т. Если бы за Т поставить третий прибор U, ось которого направлена по (+х), как показано на фиг. 4.5, а, то все частицы пошли бы в пучок (+) прибора U.

Фиг. 4.5. Частица в состоянии (+х) ведет себя в опытах а и б по-разному.


Теперь представим, что произойдет, если Т и U вместе повернуть на 90°, как показано на фиг. 4.5, б. Прибор Т опять будет пропускать все, что в него поступает, так что частицы, входящие в U, будут в (+x)-состоянии по отношению к S. Но U теперь анализирует состояние (+y) (по отношению к S), а это совсем не то, что раньше. (Из симметрии следует ожидать, что через него пройдет только половина частиц.)

Что же могло перемениться? Приборы Т и U по отношению друг к другу расположены одинаково. Могла ли измениться физика просто из-за того, что Т и U иначе ориентированы? Нет, гласит наше первоначальное предположение. Значит, различаться в двух случаях, показанных на фиг. 4.5, должны амплитуды по отношению к Т. То же должно быть, следовательно, и на фиг. 4.4. Частица должна как-то уметь узнавать, что в Р1 она завернула за угол. Как же она может об этом поведать? Что ж, остается только одно: величины С'+ и С'+ в обоих случаях одинаковы, но могут — а на самом деле должны — обладать разными фазами. Мы приходим к заключению, что С'+ и С+ должны быть связаны формулой

а С'- и С- —формулой

где λ и μ — вещественные числа, которые как-то должны быть связаны с углом между S и Т.

В данный момент единственное, что мы можем сказать про λ и μ, — это то, что они не могут быть равны друг другу (кроме показанного на фиг. 4.5, а особого случая, когда Т и S ориентированы одинаково). Мы видели, что изменение всех амплитуд на одну и ту же фазу ни к каким физическим следствиям не приводит. По той же причине всегда можно добавить к λ и μ любое постоянное число — это тоже ничего не изменит. Значит, нам представляется возможность выбрать λ и μ равными плюс и минус одному и тому же числу. Всегда можно взять

Тогда

Итак, мы договоримся[12] считать μ=-λ и придем к общему правилу, что поворот прибора, относительно которого ведется отсчет, вокруг оси z на какой-то угол приводит к преобразованию

(4.16)

Абсолютные значения одинаковы, а фазы различны. Эти-то фазовые множители и отвечают за различные результаты двух опытов, показанных на фиг. 4.5.

Теперь надо узнать закон, связывающий λ с углом между S и Т. Для одного случая ответ известен. Если угол — нуль, то и λ — нуль. Теперь предположим, что фазовый сдвиг λ есть непрерывная функция угла φ между S и Т (см. фиг. 4.4) при φ, стремящемся к нулю. По-видимому, это единственное разумное допущение. Иными словами, если свернуть Т с прямой линии S на малый угол ε, то и λ тоже будет малым числом, скажем mε, где m — некоторый коэффициент. Мы пишем mε, потому что можем доказать, что λ обязано быть пропорционально ε. Если бы мы поставили за T новый прибор Т, тоже образующий с Т угол ε, а с S тем самым образующий угол 2ε, то по отношению к Т мы бы имели

а по отношению к T'

Но мы знаем, что должны были бы получить тот же результат если бы сразу за S поставили Т'! Значит, когда угол удваивается, то удваивается и фаза. Эти аргументы мы можем, естественно, обобщить и построить любой поворот из последовательных бесконечно малых поворотов. Мы заключаем, что λ пропорционально φ для любого угла φ. Поэтому всегда можно писать λ=mφ.

Общий полученный нами результат состоит, следовательно, в том, что для Т, повернутого вокруг оси z относительно S на угол φ,

(4.17)

Для угла φ и для всех поворотов, которые встретятся нам в будущем, мы условимся считать, что положительным поворотом будет поворот правого винта, который ввинчивается в положительном направлении z.

Теперь остается узнать, каким должно быть m. Попробуем сперва следующее рассуждение: пусть Т повернулся на 360°; ясно, что тогда он опять очутится под нулем градусов, и мы должны будем иметь С'+=С+ и С'-=С-, или, что то же самое, eim=1. Мы получаем m=1. Это рассуждение не годится!

Чтобы убедиться в этом, допустим, что Т повернут на 180°. Если бы m было равно единице, мы получили бы C'+=eiπC+=-C+ и C'-=e-iπC-=-C-. Но это просто опять получилось первоначальное состояние. Обе амплитуды попросту умножены на -1; это возвращает нас к исходной физической системе. (Опять случай всеобщей перемены фаз.) Это означает, что если угол между Т и S на фиг. 4.5, б увеличивается на 180°, то система (по отношению к Т) оказывается неотличимой от случая 0° и частицы должны опять проходить через состояние (+) прибора U. Но при 180° состояние (+) прибора U — это состояние (-х) начального прибора S. Так что состояние (+x) станет состоянием (-х). Но мы-то ведь ничего не делали для изменения начального состояния; ответ поэтому ошибочен. Не может быть, чтобы m=1.

Нет, все должно быть иначе: надо, чтобы только поворот на 360° (и ни на какие меньшие углы) воспроизводил то же самое физическое состояние. Это случится при m=1/2. Тогда и только тогда первым углом, воспроизводящим то же самое физическое состояние, будет угол φ=360°[13]. При этом будет

(4.18)

Очень курьезно вдруг обнаружить, что поворот прибора на 360° приводит к новым амплитудам. Но на самом деле они не новы, потому что одновременная перемена знака ни к какой новой физике не приводит. Если кто-нибудь задумает переменить все знаки у всех амплитуд, подумав, что он повернулся на 360°, то это его дело — физику он получит ту же, прежнюю[14]. Итак, наш окончательный ответ таков: если мы знаем амплитуды С+ и С- для частиц со спином 1/2 по отношению к системе отсчета S и если затем мы используем базисную систему, связанную с Т (Т получается из S поворотом на φ относительно оси z), то новые амплитуды выражаются через старые так:

(4.19)

§ 4. Повороты на 180° и па 90° вокруг оси у

Теперь попробуем подобрать преобразование для поворота Т (по отношению к S) на 180° вокруг оси, перпендикулярной к оси z, скажем вокруг оси у. (Оси координат мы определили на фиг. 4.1.) Иными словами, берутся два одинаковых прибора Штерна—Герлаха и второй из них, Т, переворачивается относительно первого, S, «вверх ногами» (фиг. 4.6).

Фиг. 4.6. Поворот на 180° вокруг оси у.


Если рассматривать частицы как маленькие магнитные диполи, то частица, которая находится в состоянии (+S) (в первом приборе она избирает «верхний» путь), и во втором приборе избирает «верхний» путь, т. е. окажется по отношению к T в минус-состоянии. (В перевернутом приборе Т переворачиваются и поле, и направление его градиента; для частицы с заданным направлением магнитного момента сила не меняется.) То, что для S было «верхом», то для Т будет «низом». Для такого относительного расположения S и Т преобразования, естественно, должны дать

Как и раньше, нельзя исключить добавочные фазовые множители; на самом деле может оказаться, что

(4.20)

где β и γ еще подлежат определению.

А что можно сказать о повороте вокруг оси у на угол 360°? Мы уже знаем ответ для поворота на 360° вокруг оси z: амплитуда пребывания в любом состоянии меняет знак. Повороты на 360° вокруг любой оси всегда приводят прибор в прежнее положение. Таким образом, результат любого поворота на 360° должен быть таким же, как и при повороте на 360° вокруг оси z, —все амплитуды должны просто переменить знак. Теперь представим себе два последовательных поворота на 180° вокруг оси у по формуле (4.20); после них должен получиться результат (4.18). Иными словами,

и

(4.21)

Это означает, что

Следовательно, γ=-β+π, и преобразование для поворота на 180° вокруг оси у может быть записано так:

(4.22)

Рассуждения, которыми мы только что пользовались, в равной степени применимы к поворотам на 180° вокруг любой оси в плоскости ху, хотя, конечно, повороты вокруг разных осей дадут для β разные числа. Но это единственное, чем они могут отличаться. В числе β имеется известный произвол, но, как только оно определено для какой-то одной оси в плоскости ху, оно определяется и для всех прочих осей. Принято выбирать β=0 для поворотов на 180° вокруг оси у.

Чтобы показать, что свобода такого выбора у нас есть, предположим, что мы решили, что β не равно нулю для поворота вокруг оси y; тогда можно показать, что в плоскости ху существует какая-то другая ось, для которой соответствующая фаза будет нулем. Найдем фазовый множитель βA для оси А, образующей с осью у угол α, как показано на фиг. 4.7, а.

Фиг. 4.7. Поворот на 180° вокруг оси А (а) эквивалентен повороту на 180° вокруг оси у (б), за которым следует поворот вокруг оси z' (в).


(Для удобства на рисунке угол α отрицателен, но это неважно.) Если теперь мы возьмем прибор Т, первоначально направленный так же, как и S, а потом повернем его вокруг оси А на 180°, то его оси — назовем их х", у", z"— расположатся так, как на фиг. 4,7, а. Амплитуды по отношению к Т тогда станут

(4.23)

Но той же самой ориентации можно добиться двумя последовательными поворотами, показанными на фиг. 4.7, б и в. Возьмем сначала прибор U, повернутый по отношению к S на 180° вокруг оси у. Оси х', у' и z' прибора U будут такими, как на фиг. 4.7, б, а амплитуды по отношению к U будут даваться формулой (4.22).

Заметьте теперь, что от U к T можно перейти, повернув прибор U вокруг «оси z», т. е. вокруг z', как показано на фиг. 4.7, в. Из рисунка видно, что требуемый угол вдвое больше угла α, но направлен в обратную сторону (по отношению к z'). Используя преобразование (4.19) с φ=-2α, получаем

(4.24)

Подставляя (4.22) в (4.24), получаем

(4.25)

Эти амплитуды, конечно, должны совпасть с полученными в (4.23). Значит, βA должно быть связано с α и β формулой

(4.26)

Это означает, что если угол α между осью А и осью у (прибоpa S) равен β то в преобразовании поворота на 180° вокруг оси А будет стоять βA=0.

Но коль скоро у какой-то из осей, перпендикулярных к оси z, может оказаться β=0, то ничто не мешает принять эту ось за ось у. Это всего лишь вопрос соглашения, и мы примем это в общем случае. Итог: для поворота на 180° вокруг оси у мы имеем

(4.27)

Продолжая размышлять о поворотах вокруг оси у, перейдем теперь к матрице преобразования для поворотов на 90°. Мы в состоянии установить ее вид, оттого что знаем, что два последовательных поворота на 90° вокруг одной и той же оси — это то же самое, что один поворот на 180°. Напишем преобразование для 90° в самой общей форме:

(4.28)

Второй поворот на 90° вокруг той же оси обладал бы теми же коэффициентами:

(4.29)

Подставляя (4.28) в (4.29), получаем

(4.30)

Однако из (4.27) нам известно, что

так что должно быть

(4.31)

Этих четырех уравнений вполне хватает, чтобы определить все наши неизвестные а, b, с и d. Сделать это нетрудно. Посмотрите на второе и четвертое уравнения. Вы видите, что a2=d2, откуда либо a=d, либо a=-d. Но последнее отпадает, потому что тогда не выполнялось бы первое уравнение. Значит, d=a. А тогда сразу же выходит b=1/2a и с=-1/2а. Теперь все выражено через а. Подставляя, скажем, во второе уравнение значения b и с, получаем

Из четырех решений этого уравнения только два приводят к детерминанту стандартной формы. Мы можем принять а=1/√2; тогда[15]

Иными словами, для двух приборов S и T при условии, что Т повернут относительно S на 90° вокруг оси у, преобразование имеет вид

(4.32)

Эти уравнения можно, конечно, разрешить относительно С+ и С-; это даст нам преобразование при повороте вокруг оси у на -90°. Переставив еще и штрихи, мы напишем

(4.33)

§ 5. Повороты вокруг оси х

Вы, пожалуй, подумаете: «Это становится смешным. Чему же нас теперь будут учить— поворотам на 47° вокруг оси у, потом на 33° вокруг x? Долго ли это будет продолжаться?» Нет, оказывается, я почти все рассказал. Зная только два преобразования — на 90° вокруг оси у и на произвольный угол вокруг оси z (как вы помните, именно с этого мы начали), — мы уже способны производить любые повороты.

Для иллюстрации предположим, что нас интересует поворот на угол α вокруг оси х. Мы знаем, как быть с поворотом на угол α вокруг оси z, но нам нужен поворот вокруг оси х. Как его определить? Сперва повернем ось z вниз до оси х, а это есть поворот на +90° вокруг оси у (фиг. 4.8).

Фиг. 4.8. Поворот на угол α вокруг оси х равнозначен повороту на +90° вокруг оси у (а), за которым следует поворот ни а вокруг оси z' (б), вслед за которым происходит поворот на -90° вокруг оси у" (в).


Затем вокруг оси z' повернемся на угол α. А потом повернемся на -90° вокруг оси у". Итог этих трех поворотов тот же самый, что при повороте вокруг оси х на угол α. Таково свойство пространства.

(Все эти сочетания поворотов их результат очень трудно себе представить. Не правда ли, странно, что, живя в трех измерениях, мы все же с трудом воспринимаем, что произойдет, если сперва повернуться так, а потом еще как-нибудь. Вероятно, если бы мы были птицами или рыбами и если бы мы на собственном опыте знали, что бывает, когда все время крутишь разные сальто в пространстве, нам было бы легче воспринимать подобные вещи.)

Во всяком случае, давайте выведем преобразование для поворота на угол α вокруг оси х, пользуясь тем, что нам уже известно. При первом повороте на +90° вокруг оси у амплитуды следуют закону (4.32). Если повернутые оси обозначить х', y' и z', то последующий поворот на угол α вокруг оси z переводит нас в систему отсчета х", у", z", для которой

Последний поворот на -90° вокруг оси у" переводит нас в систему х'", у'", z'"; из (4.33) следует

Сочетая эти два последних преобразования, получаем

Подставляя сюда вместо С'+ и С'- (4.32), придем к полному преобразованию

А если вспомнить, что

то эти формулы можно записать проще:

(4.34)

Это и есть наше искомое преобразование для поворота вокруг оси х на любой угол α. Оно лишь чуть посложнее остальных.

§ 6. Произвольные повороты

Теперь уже понятно, как быть с произвольным поворотом. Во-первых, заметьте, что любая относительная ориентация двух систем координат может быть описана тремя углами (фиг. 4.9).

Фиг. 4.9. Ориентацию любой системы координат х', у', z' по отношению к другой системе х, у, z можно определить с помощью углов Эйлера α, β, γ.


Если есть система осей х', у', z', ориентированных относительно х, у, z как угодно, то соотношение между ними можно описать тремя углами Эйлера α, β и γ, определяющими три последовательных поворота, которые переводят систему х, у, z в систему х', у', z'. Отправляясь от x, у, z, мы поворачиваем нашу систему на угол β вокруг оси z, перенося ось х на линию х'. Затем мы проводим поворот на угол α вокруг этой временной оси х1, чтобы довести ось z до z'. Наконец, поворот вокруг новой оси z (т. е. вокруг z') на угол γ переведет ось х1 в х', а ось у в у'[16]. Мы знаем преобразования для каждого из трех поворотов — они даются формулами (4.19) и (4.34). Комбинируя их в нужном порядке, получаем

(4.35)

Итак, начав просто с некоторых предположений о свойствах пространства, мы вывели преобразование амплитуды при любом повороте. Это означает, что если нам известны амплитуды того, что любое состояние частицы со спином 1/2 перейдет в один из двух пучков прибора Штерна—Герлаха S с осями х, у, z, то мы можем подсчитать, какая часть перейдет в каждый пучок в приборе Т с осями х', у' и z'. Иначе говоря, если имеется состояние ψ частицы со спином 1/2, у которого амплитуды пребывания вверху и внизу по отношению к оси z системы координат х, у, z равны С+=<+|ψ> и С-=<-|ψ>, то тем самым мы знаем амплитуды С+ и C- пребывания вверху и внизу по отношению к оси z' любой другой системы х', у', z'. Четверка коэффициентов в (4.35) — это члены «матрицы преобразования», с помощью которой можно проецировать амплитуды частицы со спином 1/2 в другие системы координат.

Теперь решим несколько примеров, чтобы посмотреть, как все это работает. Возьмем следующий простой вопрос. Пустим атом со спином 1/2 через прибор Штерна—Герлаха, пропускающий только состояние (+z). Какова амплитуда того, что атом окажется в состоянии (+x)? Ось +х — это все равно, что ось +z' системы, повернутой на 90° вокруг оси у. Поэтому в этой задаче проще воспользоваться выражением (4.32), хотя, конечно, можно применить и полное уравнение (4.35). Поскольку С+=1 и С-=0, то получится С'+=1/√2. Вероятности — это квадраты модулей этих амплитуд; таким образом, 50% шансов за то, что частица пройдет сквозь прибор, отбирающий состояние (+х). Если бы мы поинтересовались состоянием (-х), то амплитуда оказалась бы -1/√2, что опять дало бы вероятность 1/2, чего и следовало ожидать из симметрии пространства. Итак, если частица находится в состоянии (+z), то ей в равной степени вероятно побывать в состояниях (+x) и (-х). Но фазы противоположны.

Ось у тоже без претензий. Частица в состоянии (+z) имеет равные шансы быть в состоянии (+у) или (-у). Но теперь (согласно формуле для поворота на -90° вокруг оси х) амплитуды суть 1/√2 и -i/√2. В этом случае разница в фазах двух амплитуд уже не 180°, как было для (+х) и (-х), а 90°. В этом-то и проявляется различие между х и у.

Вот еще пример. Пусть нам известно, что частица со спином 1/2 находится в состоянии ψ, поляризованном вверх относительно оси А, определяемой углами θ и φ (фиг. 4.10).

Фиг. 4.10. Ось А, определяемая полярными углами θ и φ.


Мы хотим знать амплитуду +|ψ> того, что частица относительно оси z окажется в состоянии «вверх», и амплитуду -|ψ> того, что она окажется в состоянии «вниз» относительно той же оси z. Эти амплитуды мы можем найти, вообразив, что А есть ось z' системы, у которой ось х' направлена произвольно, скажем лежит в плоскости, образованной А и z. Тогда можно перевести систему А в систему х, у, z тремя поворотами. Во-первых, надо сделать поворот на -π/2 вокруг оси A, что переведет ось x в линию В на рисунке. Затем повернуть на -θ вокруг линии В (вокруг новой оси х системы А), чтобы ось А попала на ось z. И, наконец, повернуть вокруг оси z на угол (π/2-φ). Вспоминая, что вначале было только одно состояние (+) по отношению к А, получаем

(4.36)

Мы хотели бы напоследок подытожить результаты этой главы в форме, которая окажется полезной для нашей дальнейшей работы. Во-первых, напомним, что наш основной результат (4.35) может быть записан в других обозначениях. Заметьте, что (4.35)— это то же самое, что и (4.4) Иначе говоря, в (4.35) коэффициенты при С+=<+S|ψ> и C'-=<-S|ψ> суть как раз амплитуды <jT|iS> в (4.4), амплитуды того, что частица в состоянии i по отношению к S окажется в состоянии j по отношению к Т (когда ориентация Т по отношению к S дается углами α, β и γ). Мы их также называли RTSji в выражении (4.6). (Чего-чего, а обозначений у нас хватало!) Например, RTS-+=<-T|+S> — это коэффициент при С+ в формуле для С-, а именно isin(α/2)exp[i(β-γ)/2]. Поэтому сводку наших результатов мы можем дать в виде табл. 4.1.


Таблица 4.1. АМПЛИТУДЫ <jT|iS> ДЛЯ ПОВОРОТА, ОПРЕДЕЛЯЕМОГО УГЛАМИ ЭЙЛЕРА α, β, γ (ФИГ. 4.9)

Было бы удобно иметь эти амплитуды расписанными для некоторых особо важных случаев. Пусть Rz(φ) — поворот на угол φ вокруг оси z. Так же можно обозначить и соответствующую матрицу поворота (опуская молчаливо подразумеваемые индексы i и j). В том же смысле Rx(φ) и Ry(φ) будут обозначать повороты на угол φ вокруг оси х и оси у.

В табл. 4.2 мы приводим матрицы — таблицы амплитуд <jT|iS>, которые проецируют амплитуды из системы S в систему Т, где Т получается из S указанным поворотом.


Таблица 4.2. АМПЛИТУДЫ ДЛЯ ПОВОРОТА R(φ) НА УГОЛ φ ВОКРУГ ОДНОЙ ИЗ ОСЕЙ Rя(φ)

Глава 5 ЗАВИСИМОСТЬ АМПЛИТУД ОТ ВРЕМЕНИ