Тончайшее несовершенство, что порождает всё. Долгий путь к частице Бога и Новая физика, которая изменит мир — страница 38 из 50

стоп-скварком. Тут стоит добавить, что в то время как постоянно окружающее бозон Хиггса облако частиц увеличивает его массу, облако их суперпартнеров, счастиц, уменьшает ее, и оба эти явления в точности компенсируют друг друга, так что масса бозона остается неизменной.

Резюмируя сказанное, можно утверждать, что присутствие суперсимметричных частиц представляло бы естественное объяснение, почему бозон Хиггса такой легкий, – и Сьюзи сохраняет свое очарование в том числе и по этой причине. Однако если этот гениальный механизм может работать, то и масса стоп-скварка не должна сильно отличаться от массы топ-кварка, равной примерно 173 ГэВ. И вот тут скрывается проблема: если стоп-скварки так легки, мы должны были бы видеть их в изрядных количествах. Но все предпринятые до сих пор попытки не дали никаких результатов, и мы теперь знаем, что если стоп-скварк и существует, его масса никак не может быть меньше 400–500 ГэВ.

И вообще – Сьюзи представляется чудотворной теорией, способной в одно касание решить любую из фундаментальных проблем современной физики (темная материя, великое объединение, загадка легкого бозона Хиггса), но и у нее есть слабое место: никому все еще не удалось найти ни одной из многочисленных частиц, предсказываемых этой теорией. При каждой попытке мы всего лишь получаем новый нижний предел для массы предполагаемой суперсимметричной частицы.

Если Сьюзи справедлива, то ее частицы должны быть очень тяжелыми, и, ввиду того, что нет никаких их следов, многие начинают думать, будто пора уже отказаться от исходного допущения. Но нет, пока это делать рано, и прежде всего потому, что в ближайшие годы у нас появится возможность систематически исследовать обширнейший диапазон энергий, в котором может скрываться множество сюрпризов.

Вот почему с открытием бозона Хиггса стали возникать все новые и новые области исследований.

С одной стороны, продолжается непосредственная охота за суперсимметричными частицами. Из-за возрастания рабочей энергии LHC, достигшей к 2015 году 13 ТэВ, есть шанс получить более массивные частицы, ускользавшие от исследователей при энергиях в 7–8 ТэВ. Теперь добавилось дополнительное ограничение, связанное с присутствием того самого объекта массой в 125 ГэВ. Мы уже знаем, что если не найдется стоп-скварков легче 2 ТэВ, то описанный выше механизм компенсаций, который казался таким элегантным и который позволял поддерживать Сьюзи ее sex appeal[49], ничем более оправдать будет нельзя и Сьюзи (или, во всяком случае, ее наиболее известный вариант) окажется в серьезном кризисе.

С другой стороны, братья бозона Хиггса разыскиваются в том же самом диапазоне, который уже внимательно исследовался в связи с поисками бозона Стандартной модели. Сделанного до сих пор пока недостаточно, так как идет поиск частиц со слишком различными характеристиками. У братьев бозона Хиггса другие каналы рождения и распада, и потому для их поиска нужны особые стратегии. К тому же тут потребуются значительные объемы данных, так как чем тяжелее частица, тем сложнее ее получить и тем реже она попадается.

Одновременно продолжаются исследования бозона Хиггса с массой 125 ГэВ. Стандартная модель предсказывает все ее характеристики с очень большой точностью. Все, что мы видели до сих пор, хорошо совпадает с предсказаниями, но наша точность ограничена небольшим количеством бозонов, которые нам удалось распознать. Во многих процессах распада погрешность наших измерений сильно превосходит 10 %. Она оставляет достаточно места для отличия истинных характеристик от измеренных, а аномалии, предсказываемые Сьюзи, проявятся в отклонениях всего на несколько процентных пунктов.

За прошедшие с момента открытия годы мы могли выделить на LHC десятки тысяч бозонов Хиггса, чтобы подробно изучать их свойства. Если бы мы заметили хоть какую‑то аномалию в них, мы бы получили непрямое указание на присутствие каких‑то новых частиц. У нас было бы научное доказательство существования Новой физики, и мы бы знали, при каких энергиях ее надо искать.

Знаете, какой тайной надеждой тешили мы себя в 2012 году? Только что открытый бозон Хиггса послужит нам в качестве портала в Новую физику и станет первым звеном в длинной цепи открытий.

Конец Вселенной

Электрослабый вакуум играет ключевую роль в эволюции Вселенной. После того как мы измерили с высокой точностью массу бозона Хиггса, в теории не осталось свободных параметров и мы можем воспользоваться Стандартной моделью и всем тем, что знаем о квантовой теории, для того, чтобы изучать эту самую эволюцию. В частности, едва только мы обнародовали первые данные относительно бозона, различные группы теоретиков спросили нас: а что бозон Хиггса с массой 125 ГэВ говорит нам об устойчивости электрослабого вакуума?

Сформулированный таким образом, этот вопрос кажется адресованным только специалистам, но в действительности он касается всех людей, потому что речь тут идет о судьбе нашей Вселенной. Спонтанному нарушению симметрии вакуума принадлежит решающая роль в регуляции механизма, определяющего правила игры фундаментальных взаимодействий и, соответственно, придающих очень специальную форму окружающей нас Вселенной. Характеристики электрослабого вакуума, при которых слабые и электромагнитные силы разделяются, можно изучать как функции многих переменных; две важнейшие из них – это массы топ-кварка и бозона Хиггса, двух самых тяжелых частиц в Стандартной модели. Теперь, хорошо зная эти две величины, стало возможно вычислить, как будет вести себя электрослабый вакуум в зависимости от энергии, и понять, как он сформировался в первые мгновения жизни Вселенной, а также сделать некоторые предположения относительно его эволюции в будущем.

Проведенные вычисления были довольно упрощенными. Предполагалось, что Стандартная модель справедлива при любых энергиях, а эта гипотеза, как мы знаем, может и не быть верна. Кроме того, не принималась в расчет та роль, которую могла играть гравитация, – а это может оказаться слишком грубым допущением, поскольку мы пока не поняли, что происходит при высоких энергиях с этим самым загадочным из взаимодействий. Тем не менее были получены весьма интригующие результаты, которые вызвали горячие споры, длящиеся до сих пор.

Используя массы топ-кварка и бозона Хиггса, можно построить своего рода диаграммы состояния электрослабого вакуума, то есть график, похожий на те, с помощью которых характеризуется физическое состояние жидкости, например воды. В самом деле: мы знаем, что в зависимости от давления и температуры вода может находиться в жидком, твердом или газообразном состоянии. В обычном состоянии, то есть при атмосферном давлении, при температуре ниже 0 °C вода замерзает, при температуре от 0 °C до 100 °C находится в жидком состоянии, а при температуре выше 100 °C переходит в газообразное состояние. Что‑то подобное происходит и с электрослабым вакуумом, состояние которого может изучаться как функция массы топ-кварка и массы бозона Хиггса, играющих роль, аналогичную той, что давление и температура играют для воды.

И тут нас поджидает сюрприз. На основании этого исследования становится ясно, что наша Вселенная какая‑то очень специальная. При существующих совершенно особых значениях массы топ-кварка и массы бозона Хиггса она оказывается в метастабильном состоянии, то есть заключенной в узком промежутке между областью устойчивого равновесия и бездной тотальной нестабильности.

Если бы массы топ-кварка и бозона Хиггса были чуть‑чуть другими, электрослабый вакуум оказался бы настолько нестабильным, что в нем была бы невозможна никакая эволюция: микроскопический разрыв в квантовом вакууме, проделанный Большим взрывом, немедленно бы затянулся, и все бы закончилось, не успев даже начаться. С этими же “совершенно особыми значениями” электрослабый вакуум, напротив, смог удержаться и закрепиться надолго, на целые миллиарды лет, позволив эволюции довести дело до появления нас с вами.

Но и стабильность при этом совсем не абсолютна. Если в какой‑то части Вселенной по какой‑то таинственной причине возникнет сгусток энергии, в миллиарды раз превосходящий ту, что мы производим в LHC, электрослабый вакуум может разрушиться. По всей вероятности, этот разрыв не будет оставаться локальным. Когда в какой‑то одной области система устремится к новому равновесию, весь избыток энергии, аккумулированный вакуумом, превратится в излучение, а весь космос – в огромный огненный шар.

Итак, мы приходим к двум возможным сценариям конца Вселенной. Если электрослабый вакуум удерживается, темная энергия будет отталкивать все от всего до тех пор, пока мрак и холод не воцарятся беспредельно. Ну, а изменение структуры вакуума (то есть космическая катастрофа) может, напротив, прервать замороженный макабрический танец темной энергии и вытолкнуть нас с этой сцены куда более решительным и значительно более эффектным пинком.

Однако у нас есть чем утешиться: оба эти сценария, судя по тому, что нам известно на сегодняшний день, в ближайшее время не реализуются. Так что мы все еще можем строить планы на летние каникулы или мечтать о пенсии. Очень вероятно, что у Вселенной есть в запасе несколько миллиардов лет относительно спокойной жизни.

Но интригует меня в этой истории вот что: метастабильное состояние нашей Вселенной, похоже, определяет связь между бренностью человеческого существования и шаткостью Вселенной в ее целокупности. Хрупкость человеческих существ, ненадежность наших тел, которые могут быть напрочь испорчены одним-единственным фрагментом ДНК, если в нем что‑то вдруг не сложится, или простым падением с лестницы, словно бы отражает космическую бренность, присущую даже окружающим нас галактикам и их скоплениям, когда‑то казавшимся нам бессмертными.

Следствия гипотез относительно стабильности электрослабого вакуума сильно подогрели интерес к теориям, в которых фигурирует мультиверсум. Если принимается та точка зрения, что наша Вселенная – одна из множества других вселенных, характеризующихся различными и случайными начальными условиями, то чего удивляться, что у нас такие исключительные значения масс у топ-кварка и бозона Хиггса? Окажись они другими, времени жизни Вселенной не хватило бы на появление живых существ, достаточно умных, чтобы задавать такие вопросы