[6], должны бы окружать нас в немалых количествах.
Но самый веский аргумент вот каков: все данные, собранные в последние тридцать лет, удивительным образом ложатся в предсказания теории.
В известном смысле мы можем наблюдать инфляцию даже сегодня, благодаря удивительной однородности микроволнового космического фона, – этого океана фотонов с очень низкой энергией, которые заполняют собой все пространство и недвусмысленно свидетельствуют о первых мгновениях жизни Вселенной, подобно некоему ископаемому, которое во всех деталях сообщает нам о том, что происходило миллиарды лет назад.
Космический микроволновый фон изучен нами в мельчайших деталях, причем с помощью самых чувствительных инструментов, какие только можно себе вообразить. Если бы наши глаза могли видеть то, что способен наблюдать “Планк” – орбитальная обсерватория, собравшая о нем (о микроволновом фоне) наиточнейшие сведения, нам бы открылась волшебная картина возвышающегося над нами неба. И прежде всего мы бы увидели его невероятную однородность, которую можно объяснить лишь тем, что все, что нас окружает, – это результат расширения одной исчезающе малой точки. Но еще мы бы увидели буйство красок, порождаемое незначительными колебаниями температуры космического излучения: эти‑то колебания и есть реликты квантовых флуктуаций в крошечной сингулярности, из которой все появилось. Если бы мы могли взглянуть на небо глазами “Планка”, то мы бы увидели тот уголок первородной пустоты, который, расширяясь благодаря инфляции сверх всякой меры, и породил в итоге всю нашу Вселенную.
И все же – что такое инфлатон и что именно породило космическую инфляцию? Эта тайна – одна из самых важных для современной физики – остается пока неразгаданной.
Остаться в живых в мультиверсуме
Даже если мы согласны с тем, что Вселенная прошла через инфляционную фазу, мы должны признать: нет никаких гарантий, что происходившее здесь, у нас, происходило везде. Более того: было бы вполне разумно еще немного поднапрячь свое воображение и задуматься о том, что наша Вселенная – это всего лишь малая часть намного более обширной реальности.
Все наши наблюдения ограничены горизонтом, и мы не можем ни прикоснуться к чему‑то, что находится за пределами нашей Вселенной, ни получить об этом хотя бы какую‑то информацию. Но мы полагаем, что и там может что‑то быть. Если мы примем эту гипотезу, то место, где мы находимся, должно утратить свою исключительность. Вера в равноправие заставляет предположить, что наша Вселенная – лишь один из членов обширнейшей семьи, в которую, по некоторым оценкам, входит умопомрачительное число других вселенных: их 10500 – это число, записываемое с помощью пятисот нулей, следующих за единицей! А если так, то нам должно быть также дозволено предположить, что механизм, запустивший инфляцию, в некотором смысле постоянно активирован и может в данный момент действовать в каком‑нибудь затерянном уголке нашей Вселенной. Если в какой‑то микроскопической области по каким‑то неизвестным причинам поле, запускающее инфляцию, не находит подходящего минимума потенциала, который бы обуздал его ярость, то оттуда вырастет новая вселенная. Но нам никогда не удастся установить с ней связь.
Итак, у нас складывается картинка супервселенной, населенной огромным числом иных миров. Микроскопические флуктуации вакуума, непрерывно пузырящиеся в супервселенной, в подавляющем большинстве случаев немедленно схлопываются без каких‑либо последствий. Но в каких‑то случаях инфляционный рост все же происходит и рождаются новые вселенные; в некоторых из них начинается длительный процесс эволюции, чем‑то напоминающий нашу, но подчиняющийся, возможно, совсем другим физическим законам.
Сейчас это всего лишь спекуляции – нет шансов получить им какие‑либо экспериментальные подтверждения. Но эти рассуждения еще больше (и не исключено, что даже необратимо) отдаляют нас от традиционных представлений о том, что мы, люди, занимаем во Вселенной некое особое место. Сначала мы думали, что все в мире крутится вокруг нашей планеты; потом – причем с огромным трудом – мы переместили в центр мира Солнце. Позднее до нас дошло, что Солнце – это самая заурядная звезда в ничем не примечательной галактике, одна из многих (из примерно 100 миллиардов) в нашей Вселенной, и нам осталось утешаться тем, что мы живем в Уни-версуме, во Все-ленной, всеохватывающей и уникальной, рожденной в ходе неповторимого события, которое стали называть Большим взрывом. Однако теперь мы лишаемся и этой последней уверенности и многомировая теория обрекает нас на поиски каких‑то новых смыслов в роли, которую мы во всем этом играем.
Тайна темной материи
У нашей Вселенной, между тем, есть и другие тайны, способные поколебать нашу уверенность в, казалось бы, надежно установленных фактах и бросить вызов нашим теориям. И даже самые привычные космические объекты, галактики, в действительности куда более загадочны, чем нам думается. Наблюдения скоростей звезд на периферии спиральных галактик, вроде нашего Млечного Пути, с неизбежностью приводят к выводу: кроме видимого вещества – звезд, межзвездной пыли, туманностей и даже черных дыр, одна из которых почти всегда находится в центре любой из галактик, – там должно быть огромное количество чего‑то еще, какого‑то дополнительного неопознаваемого ингредиента. Если бы его там не было, эти периферические звезды не могли бы двигаться с наблюдаемыми скоростями, а двигались бы куда медленнее. Следовательно, это должна быть какая‑то невидимая и необъяснимая форма материи; данная материя не излучает свет и потому получила название “темной”; она полностью обволакивает галактики, проникает в занимаемое ими пространство и окружает их, простираясь на огромные расстояния и будучи своего рода тонким массивным газом, состав которого совершенно неизвестен.
Еще более удивительны наблюдения больших скоплений. Галактики, примерно как и мы с вами, любят жить семьями, галактическими скоплениями, состоящими из десятков или даже сотен членов, расположенными относительно близко (по космическим масштабам) друг к другу. В каталогах их тысячи. Первая мысль, которая должна приходить в голову физику, когда он заглядывает туда, – а что держит эти галактики вместе? Ответ кажется очевидным: сила тяжести, притягивающая их одну к другой. Но при подсчетах концы с концами не сходятся: видимая масса галактик, той их светящейся части, которую мы можем измерить, оказывается слишком мала. Чтобы объяснить устойчивость этих огромных образований, нужно допустить существование какой‑то другой – неизвестной и невидимой – формы материи. Таинственная материя должна быть повсюду: в скоплениях, в самих галактиках, в звездах и во всех планетах… да даже тут и сейчас – внутри нас, в каждой комнате нашего дома.
Нити темной материи простираются на миллиарды световых лет, образуя нечто вроде космической паутины, оплетающей крошечные (в сравнении с ними) области, где концентрируется видимое вещество. Благодаря изначальной неоднородности этой таинственной формы материи видимое вещество собиралось в сгустки, из которых спустя примерно 400 миллионов лет после Большого взрыва рождались первые звезды, а потом и первые галактики, эволюционировавшие во все остальное, – включая звездные системы, планеты и, в конечном счете, нас самих. Результаты последних исследований говорят нам, что эта невидимая и вездесущая материя – только она одна! – составляет 27 % всей массы Вселенной. Чуть больше четверти материального мира вокруг нас состоит из этой странной темной материи, и нам должно быть стыдно, что мы понятия не имеем, что же она из себя представляет.
Очарование Сьюзи
После того как доказательства существования темной материи стали множиться, теоретики разработали для нее немало возможных объяснений. Эти теории сильно различаются между собой. Одна из наиболее перспективных – суперсимметричная, которая особо любима физиками, потому что не только разгадывает тайну темной материи, но и предлагает элегантные ответы на целый ряд других вопросов.
Вообще‑то речь тут идет о целом семействе теорий, концентрирующихся вокруг предположения, что вся известная материя – лишь небольшая часть первичной материи, родившейся в момент Большого взрыва. Согласные с этим ученые считают, что у каждой известной элементарной частицы есть суперсимметричный партнер – элементарная частица практически с теми же самыми свойствами, только более тяжелая и с другим спином (так называют специфическое квантовое свойство элементарных частиц, в чем‑то схожее с вращением вокруг своей оси; спин – неизменная внутренняя характеристика данной частицы, как, например, электрический заряд).
Чтобы излишне не напрягать свою память, физики, оставив открытой возможность некоторых исключений, решили называть суперсимметричный партнер тем же словом, которым называют и саму частицу, но с добавлением в начале буквы “с”[7]. Так, суперпартнер электрона называют сэлектроном, а суперпартнер топ-кварка – стоп-скварком. Для того чтобы сделать теорию более привлекательной и описать ее более обобщенно, в обиход был пущен акроним Сьюзи (SUSY – SUper SYmmetry), напоминающий имя девушки.
Теория оказалась внутренне непротиворечивой и полностью совместимой с результатами всех экспериментов, и, стало быть, ее надо принимать всерьез. Но почему же тогда нет никаких следов суперсимметричных частиц в окружающей нас материи? Все просто: в ранней Вселенной эти частицы сосуществовали на равных с частицами обычной материи. Она (Вселенная) была настолько раскалена, что условия для таких массивных частиц, обладающих высокими энергиями, были исключительно благоприятными. Однако ее быстрое охлаждение, вызванное быстрым расширением, повлекло массовое вымирание Сьюзи. Утратив способность к дальнейшему существованию, они стали распадаться, почти моментально, в частицы обычной материи – оттого‑то мы их теперь и не находим. Но одна из них могла не исчезнуть. Теория предсказывает, что самая легкая представительница этого семейства должна быть стабильной и ни на что не распадаться. Эта частица, которую называют