Тончайшее несовершенство, что порождает всё. Долгий путь к частице Бога и Новая физика, которая изменит мир — страница 40 из 50

Если мы возьмем пять стран, больше всех инвестирующих в научные исследования и опытно-конструкторские разработки, – США, КНР, Японию, Германию и Южную Корею, – то увидим, что их ежегодные расходы в этом секторе превышают триллион долларов. Кажется, что это сумасшедшая сумма, но она составляет меньше 3 % от 35 трлн годового дохода этих пяти стран.

Наконец, тут уместен еще один вопрос: оправдывают ли полученные результаты тот уровень затрат, который необходим для проведения данных исследований?

Фундаментальные исследования нацелены на улучшение нашего понимания природы, но эта задача зачастую представляется со стороны достаточно абстрактной: понять спонтанное нарушение электрослабой симметрии, найти новые пространственные измерения, разобраться с механизмом инфляции и так далее. Однако чем абстрактнее сформулированы цели исследования, тем более конкретные и более материальные инструменты нужны, чтобы их достигнуть. Чем выше мы хотим взлететь, тем тверже должны стоять на земле.

Мы, физики, занимающиеся элементарными частицами, привыкли вести, так сказать, двойную жизнь: сегодня мы яростно спорим о стабильности электрослабого вакуума и о конце нашей Вселенной, то есть обсуждаем вопросы, граничащие с философией, а назавтра являемся в лабораторию, чтобы разработать новые материалы, придумать новые детекторы и собственными руками собрать прототипы устройств, основанные на технологиях, которые изменят судьбу человечества.

Так не раз происходило в прошлом, так, я уверен, повторится и в будущем.

Фундаментальные исследования и новые технологии

В 1989 году мы и представить себе не могли, что изобретение Тима Бернерса-Ли, сидевшего всего лишь в нескольких комнатах от нас, так сильно изменит весь мир. Появление в нашей жизни World Wide Web – это пример того, как серьезные инновации могут повернуться своей неожиданной стороной. Никто в ЦЕРН не намеревался изобретать web, в том числе и Бернерс-Ли; его делали для разрешения проблемы, связанной с тем, что LEP стал производить много данных очень разной природы: отчеты, графики, фотографии, технические чертежи… Нужно было найти способ как‑то их организовать, сделав доступными тысячам членов коллаборации. И вот наконец нашлось подходящее решение. Парень загорелся и захотел проверить, как будет работать его идея; непосредственный босс не оценил то, что он придумал, но кое‑кто решил дать Бернерсу-Ли попробовать. И вдруг – бац! Мир навсегда изменился.

6 августа 1991 года родилась первая веб-страница, а сегодня их уже миллиард. Такая чудесная вещь – и задаром! Я часто думаю, сколько проектов смогли бы мы реализовать, если бы каждый раз, когда кто‑то обращается к какой‑нибудь веб-странице, в кассу ЦЕРН падало по центу. Но уговор дороже денег. Наши исследования финансируются из общественных фондов, и все, что мы находим, мы выставляем на всеобщее обозрение совершенно бесплатно. Нет ни патента, ни прихода, никакие роялти не поступят в пользу тех, кто что‑то изобрел или открыл в физике высоких энергий. Финансирование ЦЕРН миром давно и с лихвой окупилось: экономическое воздействие нашей деятельности основательно превысило начальную инвестицию, не говоря уже об аспектах культурных и научных.

История с World Wide Web упоминается чаще прочих, но есть и много других технологий, рожденных фундаментальной физикой и изменивших нашу жизнь. Начнем с Х-лучей. Вскоре после Рождества 1895 года немецкий физик Вильгельм Рёнтген уговорил свою жену Анну Берту (изрядно, по правде говоря, сопротивлявшуюся) постоять минут пятнадцать неподвижно, положив левую руку на обернутую черной бумагой фотопластинку, размещенную под странной стеклянной колбой, с которой Вильгельм провозился много месяцев. Этот первый рентгеновский снимок полностью преобразил не только научную диагностику болезней, но и всю медицину в целом.

Рёнтген пытался понять, что происходит, когда он пропускает электрический ток между электродами, находящимися в вакууме в стеклянной трубке. Он и не думал, что, двигаясь по этому пути, откроет дорогу инновации, которая спасет жизни миллионам людей.

Попробуем вообразить, что сказал бы об этих его опытах человек с улицы конца XIX века: “И для чего они нужны, эти странные манипуляции? Не лучше ли было бы вложить деньги в лечение детей, умирающих от чахотки?”

Открытия, меняющие мир, трудно предсказать. Иногда самые важные из них совершаются почти случайно, причем людьми, которые вовсе не думали о том, как бы сделать нечто подобное; могут пройти десятилетия, прежде чем для их идеи найдется подходящее применение. Тут напрашивается сравнение с подземной рекой, которая прячется в многокилометровых карстовых пещерах, а потом вдруг являет себя, выйдя в неожиданном месте на земную поверхность.

В основе всего лежат эпохальные прорывы – открытия, заставляющие отказываться от основных парадигм. Сначала никто и не думает, что они могут для чего‑нибудь пригодиться, но затем, по прошествии десятилетий, они становятся неотъемлемой частью жизни каждого человека. Вильгельм Рёнтген не догадывался, что его аппарат ознаменует собой начало пути, который со временем приведет к компьютерной томографии, эхографии и МРТ; а ведь современная медицина немыслима без этих инноваций.

Бывает и так, что одно изобретение невозможно без другого, как невозможна лавина без первого комочка снега, полетевшего в долину. Х-лучи позволили лучше понять и ядра, и звезды, они дали нам средство исследования структуры молекул, лежащее сейчас в основе создания любого нового лекарства, любого нового материала.

Уильям Лоуренс Брэгг был совсем юным, едва окончившим университет, когда обнаружил любопытный феномен, возникавший при освещении рентгеновскими лучами небольших кристаллов. Открытие этой необычной дифракции, получившей его имя, не только сделало его самым молодым лауреатом в истории нобелевских премий (ему было всего 25 лет, когда он оказался в Стокгольме), но и позволило нам подробно изучить, из чего состоят атомы и молекулы. Революция, разразившаяся благодаря этому открытию, затронула химию, фармацевтику, материаловедение, биологию и много других дисциплин.

То же можно сказать и о лазерах. Поначалу, когда ими занимались в лабораториях, считалось, что эти аппараты никогда не принесут никакой практической пользы[53]. Кто мог подумать, что они столь нагло ворвутся во все уголки нашей повседневности? Сегодня при помощи лазеров лечат глазные болезни, разбивают тромбы, закупоривающие артерии, проигрывают музыку и показывают кинофильмы; при помощи лазера продавщица в супермаркете узнает цену товара, положенного нами в тележку, а группа хулиганов на стадионе пытается помешать вратарю команды-соперника; тонкие мощные лучи лазера используются и в промышленности – для того, чтобы проделывать отверстия в керамических или металлических пластинах.

У нас есть все основания быть уверенными в том, что тихая и незаметная трансформация не прекращается ни на минуту. Уже сегодня технологии, разработанные при постройке LHC, незаметно проникают в окружающую нас действительность. Скажем, для производства наших магнитов потребовалось сделать сверхпроводящие кабели с очень высокой пропускной способностью – и те же самые кабели стали использовать в магниторезонансных аппаратах нового поколения, которые благодаря этому стали мощнее, компактнее и экономичнее. А из‑за уменьшения стоимости и размеров многие больницы, прежде всего в странах третьего мира, получили возможность прибегать к методам диагностики, которые раньше были им недоступны.

Некоторые новые миниатюрные оптические устройства, разработанные нами для LHC, уже используются на телекоммуникационном рынке, где они позволили снизить затраты и повысить производительность.

Новые кристаллы и кремниевые детекторы, промышленно выпускаемые для наших калориметров и трековых камер, необходимы для современнейших медицинских диагностических аппаратов, позволяющих получать более точные изображения и снижать дозы облучения пациентов.

А что уж говорить о распределенных вычислениях! С самого начала было ясно, что даже самые мощные суперкомпьютеры не сумеют справиться с огромным объемом данных, получаемых в ходе экспериментов LHC. Здесь также потребовалась разработка новой технологии, и решением проблемы стали именно они – распределенные вычисления: абсолютно инновационная вычислительная инфраструктура GRID. Эту устремленную в будущее идею начали развивать на заре 1990‑х, и тогда многие сочли ее слишком авантюрной. Суть была проста: поскольку ни один вычислительный центр не обладает достаточной памятью для хранения данных и достаточной вычислительной мощностью для их анализа, то надо создать мировой суперцентр, в котором аккумулировалась бы информация обо всех крупных вычислительных центрах, занимающихся исследованиями. Вот так и образовался кластер из сотен тысяч компьютеров, которые научились работать как единая гигантская вычислительная машина. Данные направлялись туда, где было свободное дисковое пространство, а при необходимости их анализа использовались доступные на тот момент процессоры – независимо от их физического местонахождения.

Так что молодой индийский исследователь, которому надо провести анализ данных по своему классу событий, может сегодня открыть свой ноутбук в Калькутте, подключиться к Сети и запросить интересующие его данные, а потом запустить свои программы анализа и получить нужный график. Он не знает (да ему это и не требуется!), что нужные ему данные частично хранятся в Чикаго, частично в Болонье, что нужный для их анализа софт запускается на Тайване, а график, прежде чем отправиться в Индию, строится в Германии. Вычислительные мощности, с развитием сетей, стали подобны электрическим: когда нужна электроэнергия, не надо покупать генератор и никому не интересно, откуда ему или ей домой поступает напряжение и какие именно силовые подстанции подключаются в тот или иной час дня, в то или иное время года. Все просто: подключайся, пользуйся, оплачивай счета. Благодаря Сети то же самое происходит и с вычислениями: доступ к суперкомпьютеру могут получить даже те, кто находится в стране с не очень развитой инфраструктурой. Таким образом, тысячи пользователей проводят свои вычисления параллельно и платят смехотворную цену в сравнении с затратами на создание множества вычислительных центров по всему миру.