Как и в случае с любой новаторской идеей, потребовалось много времени – целых пятнадцать лет выматывающей работы, – чтобы создать новую архитектуру и добиться ее безотказного и надежного функционирования. Компьютинг, став распределенным, словно рождается заново. Вычислительные ресурсы сразу оказались значительно мощнее и значительно дешевле, да вдобавок – доступными всем. Наши успехи на LHC подтолкнули к использованию новой архитектуры и в других исследовательских областях, где требуются обширные вычислительные ресурсы, – например, в метеорологии или в гидродинамике; возник и коммерческий вариант распределенных вычислений – cloud, или “облачные”, вычисления вошли в широкий обиход как удобный инструмент, с помощью которого миллионы пользователей получают доступ к необходимым для них вычислительным ресурсам.
Ускорители, используемые для наших исследований, я бы уподобил алмазному долоту турбобура, что помогает познать тайны природы, и их семейство становится все более многочисленным. По современным оценкам, в мире сейчас более 30 тысяч ускорителей, но только 260 из них, меньше 1 %, используются в исследовательских целях. 50 % востребованы в медицине (лучевая терапия, лечение онкологических заболеваний, производство изотопов в диагностических целях, радиофармакология). Еще 41 % применяется для внедрения ионов примесей в кристаллы кремния или в другие полупроводники при производстве микросхем. Оставшиеся 9 % задействованы в иных производственных процессах.
Без физики не было бы современной медицины. Без ускорителей не было бы миниатюрных электронных устройств, обеспечивающих функционирование всего на свете: самолетов, поездов, автомобилей, станков, компьютеров – в том числе и того, на котором я сейчас пишу, – и никогда не разлучающихся с нами смартфонов. И кто может гарантировать, что человечество не получит нечто подобное, воспользовавшись более недавними открытиями, включая те, что кажутся нам сейчас слишком абстрактными и бесконечно далекими от повседневной жизни?
Когда меня спрашивают, какой прок обычному человеку от бозона Хиггса, я говорю, что не знаю. Я не в силах вообразить, на что можно было бы употребить коллимированный пучок бозонов Хиггса, и я понятия не имею, что можно извлечь из понимания, как работает новое скалярное поле. Но я уверен, что рано или поздно кто‑то посмеется над этими моими словами, как сегодня мы улыбаемся, перечитывая дебаты физиков 1930‑х годов об антиматерии. Никто из величайших ученых того времени, ни Пол Дирак, ни Герман Вейль, ни Карл Дейвид Андерсон, даже представить себе не мог, что всего через несколько десятилетий те странные частицы, которые они назвали позитронами, будут в каждодневном режиме использоваться в сотнях больниц, где есть установки ПЭТ (позитронно-эмиссионная томография). Во всем мире антиматерия используется не для того, чтобы делать ужасные бомбы, как в романах Дэна Брауна, а для диагностики тяжелых болезней или изучения тех изменений, которые происходят в мозгу человека при болезни Альцгеймера.
Однако нам всем нужно проявлять осмотрительность и помнить ответ физика Майкла Фарадея на вопрос британского министра финансов Уильяма Гладстона: “Ну а чему именно может послужить это ваше открытие? – Этого я не знаю, но очень вероятно, что вы скоро сможете обложить его налогом”.
Вызовы будущего: Япония и Китай
Открытие бозона Хиггса повлекло за собой страстную научную дискуссию, а также большие политические маневры в связи с новым поколением ускорителей, которые должны будут продолжить дело LHC. Следующим шагом (если повторять схему, сложившуюся после открытия W– и Z-бозонов) могло бы стать строительство большого ускорителя электронов. Подобно Большому электрон-позитронному коллайдеру (LEP), построенному для производства миллионов Z-бозонов и измерения всех их параметров с высокой точностью, новый коллайдер задумывается как машина, где столкновения электронов и позитронов производились бы с той же целью, но уже в отношении бозонов Хиггса. Настоящая фабрика по получению бозонов Хиггса миллионами и в идеальных экспериментальных условиях, чтобы с высокой точностью изучить все их свойства!
Еще в декабре 2011 года Япония выступила с идеей создания Международного линейного коллайдера (ILC), и с тех пор эта инициатива находится на рассмотрении, поскольку доказательство существования бозона Хиггса сделало ее очень привлекательной[54]. Сейчас, когда стала известна его масса, можно лучше просчитать реакции, в которых он появляется, и каналы, по которым идет его распад. Их можно будет использовать при проектировании электрон-протонных столкновений в ILC, где они устраиваются на линейных траекториях. Это ключевое решение: оно было принято во избежание проблем, связанных с электромагнитным излучением электронов на круговых траекториях. Два пучка – электронный и позитронный – разгоняются навстречу друг другу и сталкиваются в центре детектора.
Хотя идея сама по себе гениальна, есть целый ряд технических сложностей, ограничивающих некоторые его характеристики, прежде всего – светимость. В линейных ускорителях сгустки электронов и позитронов пересекаются только один раз, после чего частицы сбрасываются для повторного использования в новых сгустках. Хотя следующая инжекция происходит очень быстро, в секунду не удается производить более десяти-двадцати столкновений. В круговых ускорителях, напротив, частицы могут оставаться на орбитах часами, испытывая по сотни тысяч столкновений в секунду, пока не ослабнет интенсивность пучков и их не потребуется обновить. Таким образом, удается получать значительно большее число столкновений.
Чтобы скомпенсировать этот недостаток, в линейных ускорителях всемерно повышается плотность пучков: их фокусируют до предела, доводя размеры области взаимодействий до минимальных величин. Но отсюда возникают проблемы устойчивости, так как самое незначительное возмущение приводит к потере светимости. В ILC предлагается фокусировать электронный и позитронный пучки до пяти нанометров, что в тысячу раз меньше, чем в LEP; приведение во фронтальное столкновение двух настолько узких пучков создает беспрецедентные проблемы по управлению их положением.
Физическая программа ILC предусматривает столкновения с энергией в 500 ГэВ в центре масс частиц с дальнейшим доведением ее до 1000 ГэВ (1 ТэВ). Эти цели определяют длину ускорителя, так как есть теоретические ограничения на эффективность резонаторов, которые используются для разгона электронов и позитронов. На сегодня лучшая сверхпроводящая ускоряющая структура, производимая в промышленном масштабе, позволяет достигать ускорения в 24 ГэВ на километр. Для ILC ее усовершенствуют, доведя ускорение до 35 ГэВ на километр. И тогда, разгоняя пучки на протяжении 15 километров, вдоль которых располагаются тысячи ускоряющих структур, можно достичь предполагаемых 500 ГэВ. Весь ускоритель целиком, включая область, где пучки сталкиваются лоб в лоб, превращается в линейную структуру длиной в 31 км.
ILC – проект, в котором участвуют исследовательские группы всего мира. Япония выразила готовность разместить у себя новый ускоритель и предложила для него область на севере страны в горах Китаками. Это горный хребет, образованный преимущественно магматическими породами мелового периода; исключительно твердые, эти породы могли выдержать в прошлом катастрофические землетрясения – например, подземные толчки, повлекшие гибель атомной электростанции Фукусима, расположенной неподалеку, к югу отсюда.
Однако выбор столь сейсмически активного места – а подземные толчки тут практически непрерывны – для такой деликатной структуры, как ускоритель, вызывает изрядную озабоченность. Японцы, впрочем, совершенно уверены в себе, хотя многие ученые и опасаются, что в таких условиях может оказаться невозможным производить столкновения высокой интенсивности для пучков столь малого поперечного размера. Другая серьезная проблема связана с финансированием проекта: пока что ни одна страна (в том числе даже сама Япония) не выразила готовности взять на себя бремя расходов, а ведь для покрытия затрат требуется целых восемь миллиардов долларов. Короче говоря, судя по всему, строительство удастся начать не раньше 2019 года, а заработает ускоритель лишь в 2030‑м[55].
На эту инициативу очень быстро среагировал Китай, который сейчас перехватывает инициативу в физике высоких энергий. Он стал активно развивать собственные программы после того, как участились инциденты с соседней Японией, связанные со спорными островами Сенкаку/Дяоюйдао.
Сенкаку/Дяоюйдао – это группа небольших необитаемых островов в проливе между Японией, Тайванем и материковым Китаем, которая стала объектом яростных споров между этими тремя странами. В 2012 году тут произошла серия стычек, вследствие чего острова стали патрулироваться истребителями и бомбардировщиками; в городах Китая прошли многолюдные демонстрации, сопровождавшиеся уничтожением японских товаров. И если за несколько месяцев до этих событий авторитетные китайские ученые рассматривали возможность участия в проекте ILC, то позднее подобный замысел был отвергнут и Китай представил миру свои собственные планы на будущее.
Этот азиатский гигант предлагает амбициозный проект, осуществляемый в две стадии. Сначала – строительство 50‑километрового кольца, в котором разместится Круговой электрон-позитронный коллайдер (CEPC–Circular Electron-Positron Collider) на 240 ГэВ, затем – переустройство его в протонный ускоритель, способный производить столкновения с энергией до 50–90 ТэВ в системе центра масс (SPPC – Super Proton-Proton Collider).
Первая стадия позволяет провести подробные исследования бозона Хиггса. В целях уменьшения затрат для электронов и позитронов используется единое кольцо, что ограничивает максимальное количество сгустков, инжектируемых одновременно. Из-за этого нет возможности вывести на максимум светимость, и тем не менее она в два или три раза выше светимости линейного коллайдера, что делает CEPC весьма конкурентоспособным для такого типа исследований. С технологической точки зрения прорывы тут не требуются, речь идет лишь о некоторых улучшениях того, что было уже сделано для LEP, и об использовании существенных достижений последних лет в области ускорительных камер. Ускоритель может быть построен с нуля, и в качестве локации для него предлагается горный район Яньшань в 300 километрах от Пекина (вблизи городского округа Циньхуандао и недалеко от побережья Ляодунского залива), известный как китайская Тоскана. Прорыть тоннель на 50 или 70 километров в Китае стоит значительно дешевле, чем в Европе или в США; мало того: похоже, что китайцы готовы взять на себя большую часть трат. Реалистическая оценка общих расходов – около 3 млрд долларов при сроках строительства в 6–8 лет; если создание CEPC начнется в 2020 году, то к 2028‑му новый ускоритель можно будет ввести в работу