Чтобы это узнать, требуются многочисленные новые исследования. Прежде всего надо точно измерить, как меняется его потенциал с ростом энергии, а это, в свою очередь, зависит от таких параметров, как масса топ-кварка и константа связи сильного взаимодействия, которые тоже надо будет очень точно измерить. Константа связи бозона Хиггса с самим собой – еще один решающий параметр, могущий скрывать сюрпризы. Чтобы его измерить, придется исследовать редчайший процесс, который нам, может быть, удастся наблюдать лишь на этапе высокой светимости LHC: образование пар бозонов Хиггса. Для подробного исследования этого странного механизма – когда один бозон Хиггса распадается на два бозона Хиггса – будет необходимо построить новые ускорители и набраться терпения: процесс настолько редкий и сложный, что придется научиться производить пары миллионами; только после этого удастся отобрать сотню доступных для измерения.
Но, возможно, и этого окажется недостаточно для разрешения всех сомнений относительно роли бозона Хиггса в инфляции. Для того чтобы наверняка подтвердить данную гипотезу, потребуется проверить, не осталось ли в космическом фоновом излучении тончайших реликтовых следов, характерных для первичных бозонов Хиггса.
Вся Вселенная – это что‑то вроде гигантской микроволновки, которая очень разогрелась миллиарды лет назад и пока еще не до конца остыла. Ее излучение продолжают изучать самыми чувствительными инструментами, потому что оно все еще сохраняет следы – хотя бы и очень слабые – всей той истории, через которую эта “микроволновка” прошла. Поэтому то коловращение фотонов, что мы видим повсюду и что накрывает нас со всех сторон, оказывается ценнейшим источником информации о происходившем в былинные первые мгновения. Чтобы хорошо их изучить, надо избавиться от типичных помех, создаваемых атмосферой Земли; для этого измерительные приборы отправляются на орбиту или же в самых отдаленных регионах Антарктиды устанавливаются очень специальные детекторы.
Если бозон Хиггса запустил инфляцию, то он должен был оставить определенный след. Но если попытаться рассчитать этот след, то окажется, что прикосновение бозона Хиггса было очень нежным. Фотоны реликтового фона окончательно расстались с материей через 380 тысяч лет после Большого взрыва. В течение этого периода, когда фотоны и электроны непрерывно поглощались и переизлучались веществом, у них было достаточно времени, чтобы взаимодействовать с целым морем гравитационных волн, разлившимся из‑за инфляции и тысячелетиями продолжавшем раскачивать раннюю Вселенную. Пространственно-временные возмущения передавались фотонам, с которыми взаимодействовали гравитационные волны, и между ними происходил своего рода импринтинг. Характерная поляризация, специфическая для этого типа взаимодействий, от которой оставались едва заметные следы в реликтовом фоне на протяжении следующих миллиардов лет.
Эту характерную поляризацию ищут во всех самых продвинутых экспериментах, но искомый эффект очень слаб, его заглушают другие явления, и получаемые сигналы остаются невидимы. Это примерно как попытаться услышать спустя 13,8 млрд лет эхо от тихого плача ребенка. Если бозон Хиггса и запустил инфляцию, отзвук этого события все еще остается далеко за пределами чувствительности наших инструментов.
Однако мы можем открыть кое‑что новое относительно связи бозона Хиггса с величайшей загадкой начала третьего тысячелетия – с темной энергией.
Все, что мы знаем об этой не очень хорошо идентифицированной сущности, это то, что она распределена в пространстве с постоянной плотностью. Величина этой плотности очень мала, но все же отлична от нуля. Впрочем, самое удивительное – это не то, что темная энергия существует, а то, что у нее такая маленькая плотность. Если взять вакуум и рассчитать энергию, которую он должен содержать, исходя из известных механизмов квантовых флуктуаций, то мы получим плотность энергии, отличающуюся от измеренной на 120 (sic!) порядков, то есть почти на бесконечность. Ее называют “вакуумной катастрофой”, намекая на рекордное по своей провальности предсказание в истории физики.
Кое-кто думает, что так получается из‑за каких‑то механизмов компенсации, работающих при участии других частиц типа Сьюзи, которые вносят отрицательный вклад в полную энергию, вычитая из нее почти все и доводя до того самого магического значения, – положительного, но очень близкого к нулю. Другие же предполагают, что решение нам даст именно бозон Хиггса.
У хиггсовского поля есть одно специфическое значение, одинаковое во всем пространстве; хиггсовский потенциал при таком значении поля равен нулю. По этой причине разница значений потенциальной энергии в двух произвольных точках пространства в точности равна нулю. Это объясняет, почему вклад хиггсовского поля в темную энергию, строго говоря, нулевой: плотность энергии скалярного поля равна нулю. С другой стороны, если предположить, что значение хиггсовского поля слегка отличалось бы в ту или иную сторону от этого магического значения, которое повсюду обращает потенциал в нуль, то у энергии повсюду появилось бы некоторое ненулевое значение. А если в дополнение к хиггсовскому полю рассмотреть еще и другое, новое и очень слабое скалярное поле, с которым тоже связан какой‑то дополнительный бозон, то это как раз и могло бы создать ту небольшую разницу, что объяснила бы существование темной энергии. Увлекательная гипотеза, которая, хотя и не объясняет огромного расхождения, о котором мы говорили выше, но открывает возможность для наводящего на размышления сценария. Благодаря бозону Хиггса мы сумеем разгадать одну из самых интригующих загадок современной физики.
В заключение надо заметить следующее: несмотря на то, что многие ученые разочарованы отсутствием прямых свидетельств Новой физики, кое‑кто начинает задаваться вопросом, а не открыли ль мы ее уже?
Вдруг бозон Хиггса, эта совсем не обычная частица, и есть Новая физика? Ведь новый бозон – частица очень странная, до того странная, что взаимодействует даже сама с собой. Самая простая частица, какую только можно себе представить, на деле оказывается самой сложной для понимания. Что он тут делает в одиночку, этот странный тип, без заряда и без спина, действующий отдельно от всех остальных частиц, организованных в два больших семейства? Какую роль в космической трагедии играет этот экстравагантный персонаж, который дружит то с Монтекки, образующими всю материю, то с Капулетти, переносящими взаимодействия? А что если это только первая частица из целого семейства скаляров, которых не спутаешь ни с Монтекки, ни с Капулетти? Только вообразите, как будут смеяться над нами лет через двадцать: “И что за чудаки были эти ученые начала века: открыли Новую физику, но не замечали ее! Искали ее повсюду, а она была у них под носом”.
Великие дела на будущее
С открытием бозона Хиггса мы оказались на решающей развилке в истории физики. И вот с чем теперь нам предстоит разбираться: происхождение элементарных частиц, механизмы возникновения нашей материальной Вселенной, структура самого пространства-времени, темная материя и темная энергия.
Для движения вперед нам понадобятся эксперименты нового поколения, на новых ускорителях, – но и не только. Изучение крошечных элементарных частиц непременно должно сопровождаться исследованиями, так сказать, на другом конце шкалы, ведущими к более глубокому пониманию крупных космических структур. Открытие новых частиц скорее всего поможет разгадыванию некоторых космических тайн, и наоборот – из астрономических наблюдений удастся добыть знание об исчезающе малом. Никогда прежде эти два пути познания настолько не сближались и настолько не дополняли друг друга.
Наблюдение самых далеких галактик, сверхскоплений, реликтового излучения – это область применения супертелескопов последнего поколения, крупных установок, расположенных либо на Земле, либо на орбитальных обсерваториях. Именно с их помощью исследуются наиболее массивные и наиболее далекие объекты во Вселенной. Новые инструменты пытаются распознать любые возможные сигналы. Каждый день создаются все более подробные космические карты не только в традиционных оптических лучах, но и при помощи радиоволн всех частот, рентгеновского и гамма-излучения – вплоть до нейтрино и космических лучей.
Продолжаются и традиционные исследования – при помощи оптических телескопов, но теперь появились новые, более совершенные технологии, делающие видимыми самые далекие галактики. Сейчас специалисты научились изготавливать гигантские – более десяти метров в диаметре – зеркала, состоящие из десятков элементов, точные, направляемые компьютером, движения которых позволяют сфокусировать даже самые слабые световые сигналы. Были созданы исключительно чувствительные сенсоры, как в видимом диапазоне, так и в инфракрасном и в ультрафиолетовом – что не менее интересно. Наконец, чтобы избежать искажений (связанных либо с движениями атмосферы, либо со световым загрязнением), от которых невозможно избавиться даже в самых далеких пустынях, планируется отправить в космос очередную генерацию орбитальных телескопов, потомков космического телескопа “Хаббл”, вот уже более двадцати пяти лет обращающегося вокруг Земли на высоте 550 километров и продолжающего посылать нам самые красивые изображения галактических узоров, что украшают каждую пядь небесного свода.
Раскинувшиеся на огромные площади радиотелескопы продолжают регистрировать слабейшие радиоволны от пульсаров – нейтронных звезд, вращающихся с невероятной скоростью, и от активных ядер галактик, в каждом из которых сверхмассивная черная дыра поглощает свое ближайшее галактическое окружение. Самые незначительные сигналы, достигающие нас, могут поведать о целых областях во Вселенной, где разворачиваются невообразимые катастрофы; рассказать о царящем там хаосе и об ужасных событиях, столь не похожих на те, что привычны населенному нами тихому уголку мира. Но, может быть, именно благодаря пониманию этих далеких катастроф наши представления о Вселенной станут более полными и точными.