могло бы их изменить, но на самом деле этого не происходит. Таким образом, равносторонний треугольник имеет симметрию при повороте на 120° вокруг своего центра, в то время как неравносторонний треугольник ее не имеет.
Темп изменения положения.
Наряду с гравитацией, электромагнетизмом и сильным взаимодействием представляет собой одно из фундаментальных взаимодействий Природы. Эта сила также известна как слабое взаимодействие. Наиболее важным эффектом слабого взаимодействия является возможность преобразований между различными типами кварков и различными типами лептонов (но не преобразований кварков в лептоны или наоборот. Эти гипотетические кварк-лептонные преобразования возникают только в единых теориях). Слабое взаимодействие движет многими радиоактивными распадами и некоторыми критически важными реакциями горения звезд.
Эффект, при котором структуры в движущемся теле кажутся неподвижному наблюдателю сжатыми (укороченными) в направлении движения. Фицджеральд и Лоренц постулировали этот эффект, чтобы объяснить некоторые наблюдения в электродинамике движущихся тел. Эйнштейн показал, что сжатие Фицджеральда — Лоренца является логическим следствием буст-симметрии в форме, предложенной уравнениями Максвелла, то есть специальной теории относительности.
Спин элементарной частицы является мерой ее углового момента. Угловой момент, в свою очередь, представляет собой сохраняющуюся величину, которая имеет почти такое же отношение к вращениям в пространстве, как (обычный) импульс к перемещениям в пространстве. См.: Импульс.
Спином элементарной частицы является либо целое число, либо целое число + 1/2 × h / 2π, где h — постоянная Планка. В классической механике угловой момент тела является мерой углового движения этого тела.
Величина спина является стабильной характеристикой для частиц каждого типа. Принято говорить, что лептоны и кварки имеют спин 1/2, поскольку их спин равен 1/2 × h / 2π. Протоны и нейтроны также имеют спин 1/2. Фотоны, глюоны, W− и Z−бозоны имеют спин 1. Пи-мезоны и гипотетическая частица Хиггса имеют спин 0. Поляризация света является физическим проявлением спина фотона.
Угловой момент изолированного тела сохраняется. Для изменения углового момента необходимо применить крутящий момент. Быстро вращающиеся гироскопы имеют большой угловой момент, и этот факт в значительной степени ответственен за их необычную реакцию на силы.
Когда устойчивые решения системы уравнений имеют меньшую симметрию, чем сами уравнения, мы говорим, что симметрия спонтанно нарушена. Это может произойти, когда энергетически выгодным становится формирование конденсата или фонового поля, как говорилось в главе 8 и приложении Б. Тогда устойчивое решение будет предполагать, что пространство заполнено веществом, свойства которого изменяются при некоторых (прежних) преобразованиях симметрии. Таким образом, такое преобразование больше не является отличием без различия — теперь оно действительно имеет значение! Связанная с ним симметрия была спонтанно нарушена.
Знакомым и простым примером спонтанного нарушения симметрии является соглашение о вождении автомобиля по одной стороне дороги. Не имеет значения, по какой стороне дороги движутся автомобили, пока все водители делают одно и то же. Если одни люди будут ездить по левой стороне, а другие по правой, то эта ситуация будет нестабильной. Разумеется, в разных странах, например в США и Великобритании, выбор стороны дороги может быть различным.
Термин, призванный сделать так, чтобы одно из величайших интеллектуальных достижений человечества показалось скучным. Его иногда используют для обозначения электрослабой части Центральной теории, а иногда он подразумевает как электрослабую теорию, так и КХД.
Четко различимая группа частиц, движущихся почти в одном направлении. Струи частиц часто наблюдаются как продукты высокоэнергетических столкновений на ускорителях. Асимптотическая свобода позволяет интерпретировать струи в качестве видимых проявлений кварков, антикварков и глюонов, скрытых на нижележащем уровне.
Новый тип симметрии. Суперсимметрия определяет преобразования между частицами, имеющими одни и те же заряды, но разные спины. В частности, она позволяет нам воспринимать бозоны и фермионы, несмотря на их радикально отличающиеся физические свойства, в качестве различных представлений одной и той же сущности. Суперсимметрия может быть понята как буст-симметрия в суперпространстве, расширение пространства-времени для учета дополнительных квантовых измерений.
Наши существующие уравнения Центральной теории не поддерживают суперсимметрию, но их можно расширить так, чтобы они ее поддерживали. Новые уравнения предсказывают существование многих новых частиц, ни одна из которых еще не наблюдалась. Необходимо постулировать некоторую форму сверхпроводимости Сетки, чтобы сделать тяжелыми многие из этих частиц. Хорошая новость заключается в том, что новые частицы в их виртуальной форме поддерживают успешное количественное объединение сил, как описано в главе 20. Одна из новых частиц могла бы стать хорошим кандидатом на звание источника темной материи. Ускоритель БАК должен быть достаточно мощным, чтобы произвести некоторые из новых частиц, если они существуют.
Сокращенное название Стэнфордского центра линейного ускорителя, средства, которое сыграло ключевую роль в создании Центральной теории. Здесь Фридман, Кендалл, Тейлор и их соратники сфотографировали при высоком разрешении и короткой выдержке внутреннюю структуру протонов, что открыло путь к КХД. Ускоритель электронов длиной более трех километров, который они использовали, фактически представлял собой ультрастробоскопический наномикроскоп.
Астрономические наблюдения показывают, что большая часть массы Вселенной, около 25 % от общей массы, распределена гораздо более равномерно по сравнению с обычным веществом и совершенно прозрачна. Галактики, состоящие из обычного вещества, окружены обширными ореолами темной материи. Вес этого ореола примерно в пять раз превышает вес видимой галактики. Сгустки темной материи могут также существовать сами по себе. Интересными кандидатами на звание источника темной материи являются вимпы (от англ. WIMP, Weakly Interacting Massive Particle — слабо взаимодействующие массивные частицы), связанные с суперсимметрией, или аксионы. См. также: Суперсимметрия, Аксион.
Астрономические наблюдения свидетельствуют, что большая часть массы Вселенной, около 70 % от ее общей массы, распределена равномерно и совершенно прозрачна. Другие независимые наблюдения указывают на ускоряющееся расширение Вселенной, которое мы можем приписать отрицательному давлению. Величины и относительный знак этих эффектов согласуются с хорошо темперированным уравнением. Таким образом, сделанные до сих пор наблюдения могут быть описаны с помощью космологического члена. Тем не менее логически возможно, что будущие наблюдения покажут: плотность или давление не являются постоянными или не связаны хорошо темперированным уравнением. Термин «темная энергия» был введен для того, чтобы избежать предубеждения относительно этих вопросов.
Совокупность идей для расширения законов физики. Эта теория вдохновила блестящих ученых на блестящую работу, результатом которой стали важные приложения к чистой математике. В настоящее время теория суперструн не предоставляет уравнений, описывающих конкретные природные явления. В частности, Центральная теория, которая точно описывает столь многое в физическом мире, не является приближением к теории суперструн.
Идеи теории суперструн не обязательно являются несовместимыми с Центральной теорией или с идеями объединения, изложенными в этой книге. Однако обсуждаемые здесь идеи исторически не возникли из теории суперструн, а также не были выведены из нее. Их происхождение, как я подробно объяснил, является отчасти эмпирическим, а отчасти математическим/эстетическим.
Пространственно-временная точка, в которой взаимодействуют частицы (реальные или виртуальные). В диаграммах Фейнмана узлы — это места, где встречаются три или более линий. Теории взаимодействий частиц подчиняются правилам, описывающим возможные типы узлов, а также связанным с ними математическим факторам. В технической литературе узлы обычно называются вершинами. См. также: Диаграммы Фейнмана, Вершина.
Предложенное Полем Дираком в 1928 году уравнение является модификацией уравнения Шрёдингера для квантово-механической волновой функции электронов. Оно предназначено для согласования квантовой механики с буст-симметрией (то есть со специальной теорией относительности). Уравнение Дирака, грубо говоря, в четыре раза больше уравнения Шрёдингера, точнее, это набор из четырех взаимосвязанных уравнений, управляющих четырьмя волновыми функциями. Четыре компонента уравнения Дирака автоматически включают в себя спин (направленный вверх или вниз) как для частиц, так и для античастиц, что соответствует четырем компонентам. Несколько измененное уравнение Дирака также используется для описания кварков и нейтрино. В современной физике мы интерпретируем уравнение Дирака как уравнение для поля, которое рождает и уничтожает электроны (или, что то же самое, уничтожает и рождает позитроны), а не как уравнение для волновой функции отдельных частиц.
Приближенное уравнение для волновой функции электрона. Уравнение Шредингера не удовлетворяет буст-симметрии, то есть не согласуется со специальной теорией относительности. Однако это уравнение дает хорошее описание электронов, которые движутся не слишком быстро, и с ними легче работать, чем в случае с более точным уравнением Дирака. Уравнение Шредингера является основой для большинства практических работ в квантовой химии и физике твердого тела.