Тонкая физика. Масса, эфир и объединение всемирных сил — страница 5 из 30

Введенные в качестве теоретической импровизации и никогда не наблюдаемые в изоляции кварки поначалу казались удобным вымыслом. Но когда они появились на снимках протонов, сделанных с помощью ультрастробоскопического наномикроскопа, кварки превратились в неудобную действительность. Их странное поведение поставило под сомнение основные принципы квантовой механики и теории относительности. Новая теория заново открыла кварки в качестве идеальных объектов математического совершенства. Уравнения этой новой теории также требовали новых частиц, цветных глюонов. Цветные глюоны суть воплощение идеи симметрии. Спустя несколько лет люди начали делать снимки кварков и глюонов в специально созданных для этого центрах творческого разрушения.

Название этой главы имеет два смысла. Первый заключается в существовании более мелких фрагментов в том, что совсем недавно считалось мельчайшими строительными блоками обычной материи, — в протонах и нейтронах. Эти более мелкие фрагменты называются кварками и глюонами. Разумеется, название чего-либо не объясняет его сути, как говорилось в трагедии Шекспира:

«Что значит имя? Роза пахнет розой,

Хоть розой назови ее, хоть нет».

Это подводит нас ко второму, более глубокому, смыслу. Если бы кварки и глюоны представляли собой просто еще один слой в бесконечной, напоминающей луковицу сложной структуре внутри структуры, их названия были бы впечатляющими звучными словечками, с помощью которых вы могли бы впечатлить друзей на коктейльной вечеринке, но сами по себе они представляли бы интерес только для экспертов. Однако кварки и глюоны — это не «просто еще один слой». Правильно понятые, они в корне меняют наше представление о природе физической реальности, поскольку являются фрагментами в другом, гораздо более глубоком смысле, который мы используем, когда говорим о фрагментах информации. В определенной степени это качественно новые в науке воплощенные идеи.

Например, описывающие глюоны уравнения были открыты раньше, чем сами глюоны. Они принадлежат к классу уравнений, изобретенному Чжэньнином Янгом и Робертом Миллсом в 1954 году в качестве естественно-математического обобщения уравнений электродинамики Максвелла. Уравнения Максвелла уже давно были известны своей симметрией и мощью. Генрих Герц, немецкий физик, экспериментально доказавший существование предсказанных Максвеллом новых электромагнитных волн (которые мы сегодня называем радиоволнами), сказал об уравнениях Максвелла следующее:

«Невозможно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают собственным разумом, что они мудрее нас, мудрее даже тех, кто их открыл, и что мы извлекаем из них больше, чем изначально в них поместили».


Уравнения Янга — Миллса подобны уравнениям Максвелла на стероидах. Они поддерживают множество видов зарядов, а не только один (электрический заряд), использующийся в уравнениях Максвелла. Кроме того, они поддерживают симметрию между этими зарядами. Их особый вариант, применимый к реальным глюонам сильного взаимодействия и использующий три заряда, был предложен Дэвидом Гроссом и мной в 1973 году. Эти три вида зарядов, которые фигурируют в теории сильного взаимодействия, обычно называют цветными зарядами или просто цветом, хотя, конечно, они не имеют ничего общего с цветом в обычном смысле этого слова.

Мы подробнее обсудим кварки и глюоны в следующих главах. С самого начала главы, начиная с названия, я хочу подчеркнуть, что кварки и глюоны, а точнее, их поля представляют собой математически полные и совершенные объекты. Вы можете полностью описать их свойства, используя только концепции, без необходимости представлять образцы или делать какие-либо измерения. И вы не можете изменить эти свойства. Вы не в состоянии играть с этими уравнениями, не ухудшив их (то есть не сделав их противоречивыми). Глюоны — это объекты, которые подчиняются уравнениям глюонов.

Однако достаточно этой вольной рапсодии! Чистая математика полна прекрасных идей. Особая музыка физики заключается в гармонии между красивыми идеями и действительностью. Пришло время вернуться в реальность.

Кварки: бета-версия

К началу 1960-х годов экспериментаторы обнаружили десятки адронов с разными массами, временем жизни и характерным вращением (спином). Огромное количество открытий вскоре привело к некоторому «похмелью», поскольку простое накопление любопытных фактов при отсутствии какого-либо более глубокого смысла дурманило разум. В 1955 году в своей речи по случаю вручения Нобелевской премии Уиллис Лэмб пошутил:

«Когда Нобелевская премия была впервые присуждена в 1901 году, физики кое-что знали всего о двух объектах, которые сейчас называются элементарными частицами: об электроне и протоне. После 1930 года появилось множество других „элементарных“ частиц: нейтронов, нейтрино, мю-мезонов, пи-мезонов, более тяжелых мезонов, а также различных гиперонов. Я слышал, как кое-кто говорит, что „за открытие новой элементарной частицы раньше давали Нобелевскую премию, но в настоящее время за такое открытие следует наказывать штрафом в размере 10 000 долларов“».


В этой ситуации Мюррей Гелл-Манн и Джордж Цвейг совершили большой прорыв в теории сильного взаимодействия, предложив кварковую модель. Они показали, что закономерности в массах, времени жизни и спинах адронов встали бы на свои места, если бы вы представили, что адроны состоят из нескольких более мелких объектов, которые Гелл-Манн назвал кварками. Десятки адронов можно было бы по крайней мере приблизительно понимать как различные комбинации, составленные всего из трех сортов (ароматов) кварков: верхнего — u, нижнего — d и странного — s[6].

Как можно создать десятки адронов из нескольких сортов кварков? Какие простые правила стоят за этими сложными закономерностями?

Изначальные правила представляли собой импровизацию, подогнанную под наблюдения, и были несколько странными. Они определили то, что называется кварковой моделью. Согласно ей существует только две основные структуры адронов. Мезоны состоят из кварка и антикварка. Барионы состоят из трех кварков. (Существуют также антибарионы, состоящие из трех антикварков.) Таким образом, есть лишь несколько возможных комбинаций различных сортов кварков и антикварков, образующих мезоны: вы можете комбинировать u с анти-d или d с анти-s и т. д. Точно так же для барионов существует лишь несколько возможных комбинаций.

Согласно кварковой модели, большое разнообразие адронов зависит не столько от того, какие фрагменты вы складываете вместе, сколько от того, как именно вы их складываете. Если конкретно, то данный набор кварков может быть организован на различных пространственных орбитах с выровненными по-разному спинами примерно так же, как пары или тройки звезд могут быть связаны друг с другом действием силы тяжести.

Существует принципиальная разница между субмикроскопическими «звездными системами» кварков и их макроскопическими аналогами. В то время как макроскопические солнечные системы, управляемые законами классической механики, могут иметь всевозможные размеры и формы, их микроскопические версии этого не могут. Для микроскопических систем, которые подчиняются законам квантовой механики, существуют ограничения, касающиеся разрешенных орбит и направлений спинов[7]. Мы говорим, что система может находиться в различных квантовых состояниях. Каждая допустимая конфигурация орбиты и спина — каждое состояние — будет характеризоваться некоторой определенной общей энергией.

(Признание и анонс: я привожу здесь несколько неаккуратное объяснение, чтобы сразу не обременять вас слишком большим количеством подробностей. Согласно современной квантовой механике, правильным способом является описание состояния частицы в терминах ее волновой функции, которая описывает вероятность ее нахождения в том или ином месте, а не в терминах орбиты, по которой она движется. Мы поговорим об этом подробнее в главе 9. Изображение орбиты представляет собой пережиток так называемой старой квантовой механики. Она полезна в качестве визуализации, но непригодна для точной работы.)

Использование кварков для понимания адронов подобно использованию электронов для понимания атомов. Электроны в атоме могут иметь орбиты различных форм и выстраивать спины в разных направлениях. Таким образом, атом может находиться в разных состояниях и иметь разную энергию. Изучению возможных состояний посвящена обширная тема, известная как атомная спектроскопия. Мы используем ее, чтобы выяснять, из чего состоят далекие звезды, проектировать лазеры и решать многие другие задачи. Поскольку атомная спектроскопия имеет отношение к кварковой модели и чрезвычайно важна сама по себе, давайте обсудим эту тему подробнее.

Горячий газ, как в пламени или в звездной атмосфере, содержит атомы в различных состояниях. Даже в атомах с одинаковыми ядрами и с одним количеством электронов электроны могут находиться на разных орбитах, или их спины могут ориентироваться по-разному. Эти состояния имеют разные энергии. Состояния с высокой энергией могут переходить в состояния с меньшей энергией, что сопровождается излучением света. Поскольку энергия в целом сохраняется, энергия испускаемого фотона, которую выдает его цвет, кодирует разность энергий между начальным и конечным состояниями. Каждый сорт атомов имеет свою особенную палитру. Атомы водорода излучают один набор цветов, атомы гелия — совершенно другой и т. д. Физики и химики называют этот набор цветов спектром атома. Спектр служит в качестве подписи атома и может использоваться для его идентификации. Когда вы пропускаете свет через призму, луч разделяется на различные цвета и спектр буквально напоминает штрихкод.

Спектры, наблюдаемые нами в звездном свете, соответствуют спектрам, наблюдаемым в земном пламени. Поэтому мы можем быть уверены — далекие звезды состоят из того же основного материала, что и обнаруживаемый на Земле. Кроме того, поскольку свету от далеких звезд могут понадобиться миллиарды лет, чтобы добраться до нас, мы можем проверить, соответствуют ли действующие сегодня законы физики тем, которые действовали в далеком прошлом. Полученные до сих пор доказательства говорят о том, что так и есть. (Однако у нас есть веские основания полагать, что в очень ранней Вселенной, которую мы не можем непосредственно наблюдать, по крайней мере в обычном свете, действовали совершенно другие законы. Мы обсудим это позже.)

Атомные спектры дают нам множество подробных указаний для создания моделей внутреннего строения атомов. Чтобы считаться достоверной, модель должна предсказывать состояния, чьи различия в энергии соответствуют цветовому образцу, выявленному спектром. Большая часть современной химии принимает форму диалога. Природа говорит спектрами; химики отвечают моделями.

Запомнив вышесказанное, вернемся к кварковой модели адронов. Здесь применяются те же идеи с одним важным уточнением. В атомах разница в энергии между любыми двумя состояниями электронов относительно мала, и влияние, оказываемое этой разностью энергии на общую массу атома, незначительно. Центральная идея кварковой модели заключается в том, что для кварковых «атомов», то есть адронов, разница в энергии между различными состояниями настолько велика, что она сильно влияет на массу. Применив второй закон Эйнштейна, m = Е / с2, мы можем интерпретировать адроны с разными массами как системы кварков с различными орбитальными структурами — разными квантовыми состояниями, которые имеют различную энергию. Другими словами, мы видим атомные спектры, но взвешиваем спектры адронов. Таким образом, то, что на первый взгляд казалось совершенно разными частицами, теперь оказывается всего лишь различными схемами движения в пределах конкретного кваркового «атома». Используя эту идею, Гелл-Манн и Цвейг показали возможность интерпретации множества различных наблюдаемых адронов в качестве различных состояний нескольких базовых кварковых «атомов».

Пока все просто. За исключением уточнения, введенного вторым законом Эйнштейна, кварковая модель адронов выглядит повторением химии. Однако дьявол кроется в деталях, и чтобы увидеть реальность в кварковой модели, пришлось закрыть глаза на кое-какую чертовщину.

Наиболее крамольным предположением является то, о чем мы уже упоминали, — что допустимы только две структуры: мезон (кварк — антикварк) и барион (три кварка). Это предположение включает в себя, в частности, идею того, что кварки не существуют в качестве отдельных частиц! По некоторой причине вы должны были предположить невозможность существования более простой структуры. Не просто неэффективность или нестабильность, а невозможность. Никто, конечно же, не хотел в это верить, поэтому люди упорно трудились, разбивая протоны и пытаясь обнаружить частицы, которые можно было бы идентифицировать в качестве отдельных кварков. Они тщательно изучали то, что оставалось после столкновения частиц. Нобелевские премии и вечная слава, безусловно, достались бы первооткрывателям. Но увы, Святой Грааль найти не удалось. Не было обнаружено ни одной частицы, которая обладала бы свойствами отдельного кварка. В конечном итоге эта невозможность нахождения отдельных кварков, как и неспособность изобретателей создать вечный двигатель, была возведена в принцип конфайнмента (Principle of Confinement). Однако явление от этого не стало менее безумным.

Дополнительные сложности вскрылись, когда физики попытались создать детальные модели внутренней структуры мезонов и барионов с использованием кварков, учитывая их массы. В самых успешных моделях казалось, что, когда кварки (или антикварки) находятся близко друг к другу, они едва друг друга замечают. Это слабое взаимодействие между кварками было трудно примирить с закономерностью, заключающейся в том, что при попытке изолировать один кварк — или два — обнаруживалась невозможность это сделать. Если кваркам нет дела друг до друга, когда они находятся на близком расстоянии, почему они возражают против разделения, когда они друг от друга далеко?

Фундаментальная сила, которая возрастает с увеличением расстояния, была бы беспрецедентным явлением. И это поставило бы неудобный вопрос. Если силы между кварками могут возрастать с увеличением расстояния, почему же астрология не работает? В конце концов, другие планеты содержат много кварков. Может быть, они могут оказывать большое влияние… Может, и так, но на протяжении многих веков ученые и инженеры очень успешно прогнозировали результаты тонких экспериментов, возводили мосты и создавали микрочипы, игнорируя любое возможное влияние удаленных объектов. Астрология должна стоять на более прочной основе.

Поскольку хорошая научная теория должна объяснять, почему астрология так сильно хромает, лучше бы не существовало сил, возрастающих с расстоянием. Старая пословица «Любовь в разлуке крепнет» может иметь или не иметь отношения к романтике, но для частиц такое поведение является крайне странным.

При разработке программного обеспечения первым отважным пользователям часто предоставляется тестовая бета-версия. Эта версия более или менее работает, но поставляется без каких-либо гарантий. Она содержит ошибки, и в ней присутствуют не все функции. Даже работающие части программы работают неидеально.

Оригинальная кварковая модель представляла собой тестовую физическую теорию. В ней использовались специфические правила. Она оставляла такие основополагающие вопросы, как «можно ли получить изолированный кварк?», без ответа. Хуже всего то, что кварковая модель была неопределенной. В ней отсутствовали точные уравнения для сил, действующих между кварками. В этом отношении она напоминала доньютоновские модели солнечной системы или модели атомов, используемые до Шредингера (для экспертов: даже до Бора). Многие физики, включая самого Гелл-Манна, думали, что кварки могут оказаться полезным вымыслом, вроде эпициклов в старой астрономии или орбиталей старой квантовой теории. Казалось, что кварки могли бы послужить полезной временной мерой в процессе математического описания природы и их не следует воспринимать слишком буквально в качестве элементов реальности.

Кварки 1.0: сквозь ультрастробоскопический наномикроскоп

Теоретические особенности кварков дозрели до пикантных парадоксов в начале 1970-х годов, когда Дж. Фридман, Г. Кендалл, Р. Тейлор и их сотрудники начали по-новому изучать протоны в Стэнфордском линейном ускорителе (SLAC).

Вместо того чтобы сталкивать протоны и изучать то, что остается после столкновения, они фотографировали внутренности протонов. Я не хочу, чтобы это показалось простым, поскольку это не так. Чтобы заглянуть внутрь протонов, вы должны использовать «свет» с очень короткой длиной волны. В противном случае вы, по сути, пытались бы найти рыбу, анализируя ее влияние на длинные океанские волны. Фотоны, используемые для решения этой задачи, не являются частицами обычного света. Они находятся за пределами спектра ультрафиолетовых или даже рентгеновских лучей. Наномикроскоп, позволяющий изучать структуры объектов, размер которых в миллиард раз меньше размера объектов, изучаемых с помощью обычных оптических микроскопов, требует использования предельно жестких гамма-лучей.

Кроме того, внутри протонов все очень быстро движется, поэтому во избежание размытости снимка мы должны обеспечить хорошее временное разрешение. Другими словами, наши фотоны также должны отличаться чрезвычайно коротким временем жизни. Нам нужны вспышки или искры, а не длительная выдержка. Мы говорим о «вспышках», которые длятся 10–24 секунды или меньше. Фотоны, которые нам требуются, живут так недолго, что их нельзя наблюдать сами по себе. Вот почему они называются виртуальными фотонами. Ультрастробоскоп, который улавливает события длительностью в триллионную триллионной мгновения ока (на самом деле даже меньше), требует использования в высшей степени виртуальных фотонов. Поэтому «снимок» нельзя сделать с помощью проходящего «света», который обеспечивает освещение! Мы должны быть умнее и применять косвенные методы.

На линейном ускорителе в Стэнфорде ученые на самом деле сталкивали электроны с протонами и наблюдали появляющиеся в результате столкновения электроны. Возникающие электроны имеют меньшую энергию и импульс по сравнению с исходными. Поскольку энергия и импульс в целом сохраняются, потерянное электроном должно было быть унесено виртуальным фотоном и передано протону. Это, как мы уже говорили, часто приводит к тому, что протон сложным образом распадается. Гениальный новый подход, который принес Фридману, Кендаллу и Тейлору Нобелевскую премию, заключался в том, чтобы игнорировать все эти сложности и просто следить за электроном. Другими словами, мы просто движемся вместе с потоком энергии и импульса.

Таким образом, учитывая этот поток, мы можем определить вид виртуального фотона, изучая событие за событием, несмотря на то что мы не можем непосредственно «увидеть» этот фотон. Энергия и импульс виртуального фотона точно соответствуют энергии и импульсу, потерянным электроном. Измеряя вероятность того, что различные виды виртуальных фотонов с различной энергией и импульсами (соответствующими различным времени жизни и длине волны) «встретились с чем-то» и были поглощены, вы можете составить представление о том, что находится внутри протона. Эта процедура аналогична составлению картины внутреннего строения человеческого тела путем изучения того, как поглощаются рентгеновские лучи, хотя детали в данном случае значительно сложнее. Достаточно сказать, что в этом процессе используются очень изощренные методы обработки изображений.

Разумеется, внутренняя структура протонов на самом деле не похожа ни на что из того, что вы когда-либо видели или могли увидеть. Наши глаза не приспособлены (то есть недостаточно развиты) для того, чтобы различать такие маленькие расстояния и временные отрезки, поэтому любое визуальное представление ультрастробонаномикромира должно представлять собой смесь карикатуры, метафоры и обмана. Учитывая это предупреждение, пожалуйста, взгляните сейчас на рис. 6.1. Далее мы его обсудим.


Рис. 6.1 (начало). Изображения внутреннего строения протона: а — протон, движущийся почти со скоростью света, кажется сжатым в направлении движения в соответствии с теорией относительности; б — хорошее предположение о том, как может выглядеть протон изнутри, выдвинутое до появления доступных снимков. Объяснение того, почему это предположение является неправильным, вы найдете далее в тексте


Рис. 6.1 (продолжение). Изображения внутреннего строения протона: в, г — два фактических снимка. Поскольку в квантовой механике доминирует эффект неопределенности, все снимки выглядят по-разному! Внутри протона находятся кварки и глюоны, которые также движутся почти со скоростью света. Они разделяют между собой полную энергию протона, а размер стрелок указывает на их относительные доли. д, е — при увеличении разрешения можно увидеть больше деталей. Например, вы можете обнаружить, что то, что казалось кварком, оказывается кварком и глюоном, а то, что казалось глюоном, оказывается кварком и антикварком


Представляя эти иллюстрации, я использовал трюк Ричарда Фейнмана. Как мы уже отмечали, внутри протона все движется очень быстро. Чтобы замедлить ход событий, мы представляем себе, что протон движется мимо нас со скоростью, близкой к скорости света. (В главе 9 мы обсудим, как выглядят протоны, если не использовать трюк Фейнмана.) Извне протон выглядит как блин, сплющенный в направлении движения. Это знаменитое сокращение Фицджеральда — Лоренца из специальной теории относительности. Более важным для наших целей является другой известный релятивистский эффект замедления времени. Замедление времени означает, что в быстро движущихся объектах время течет медленнее. Таким образом, то, что находится внутри протонов, кажется практически неподвижным. (Все, что в нем находится, конечно же, разделяет общее движение всего протона.) Эффекты сокращения Фицджеральда — Лоренца и замедления времени были объяснены в сотнях популярных книг по теории относительности, поэтому я не останавливаюсь на них здесь, а просто их использую.

Важно подчеркнуть, что квантовая механика абсолютно необходима для описания даже самых элементарных наблюдений, касающихся внутренней структуры протонов. В частности, нам бросается в глаза неопределенность, которой славится квантовая механика и которая так тревожила Эйнштейна. Если сделать несколько снимков протона при строго идентичных условиях, вы получите разные результаты. Нравится вам это или нет, факты налицо. Самое большее, на что мы можем надеяться, — это на способность предсказать относительные вероятности получения различных результатов.

Это обилие сосуществующих возможностей, как в явлениях, так и в квантовой теории, которая их описывает, бросает вызов традиционной логике. Успех квантовой теории в описании реальности превосходит и в некотором смысле сбрасывает с пьедестала классическую логику, где одни суждения считаются истинными, а другие — неизбежно ложными. Однако это является примером творческого разрушения, которое дает возможность построить что-то новое. Например, позволяет примирить две, казалось бы, противоречивые идеи о том, что собой представляют протоны. С одной стороны, внутри протона все находится в постоянном движении. С другой — все протоны всегда и везде ведут себя одинаково (то есть каждый протон дает одни и те же вероятности!). Если протон в некоторый момент времени отличается от самого себя в другой момент времени, как все протоны могут быть одинаковыми?

Вот как. Каждое отдельное возможное состояние внутренней структуры протона A со временем преобразуется в другое состояние, скажем, B. Однако в это же время некоторое состояние C преобразуется в А. Таким образом, состояние A по-прежнему существует: новая копия заменяет старую. И в более общем смысле, несмотря на изменение каждого отдельного состояния, в целом их распределение остается неизменным. Это похоже на спокойно текущую реку, которая всегда выглядит одинаково, несмотря на то что каждая ее капля постоянно изменяется. Мы глубже погрузимся в эту реку в главе 9.

Партоны

Снимки, сделанные Фридманом и его сотрудниками, содержали как откровение, так и загадку. На этих снимках внутри протонов можно было различить некие сущности, очень маленькие субчастицы. Фейнман, который отвечал за большую часть процесса обработки изображений, назвал эти внутренние объекты партонами (от слова part — часть протона). Это злило Мюррея Гелл-Манна, как я узнал на собственном опыте, когда впервые его встретил. Он спросил меня, над чем я работаю. Я сделал ошибку, сказав, что пытаюсь улучшить партонную модель.

Я слышал, что исповедь полезна для души, поэтому здесь я признаюсь, что упомянул о партонах не по незнанию. Мне было интересно посмотреть, как Гелл-Манн отреагирует на идиому своего соперника. Как писал Измаил о своей первой встрече с капитаном Ахавом, реальность превзошла ожидания.

Гелл-Манн посмотрел на меня вопросительно. «Партоны?» Пауза, выражение глубокой концентрации на лице. «Партоны?! Что такое партоны?» Затем он снова сделал паузу и задумался, после чего его лицо просветлело: «О, вы, должно быть, имеете в виду те штуки, о которых говорит Дик Фейнман! Частицы, которые не подчиняются квантовой теории поля. Нет такого понятия. Это просто кварки. Не следует позволять Фейнману загрязнять язык науки своими шутками». Наконец, он спросил авторитетным тоном: «Не имеете ли вы в виду кварки?»

Некоторые сущности, выявленные Фридманом и его сотрудниками, действительно были похожи на кварки. Они отличались странным дробным электрическим зарядом и точным спиновым числом, которыми должны были обладать кварки. Однако протоны также содержат другие фрагменты, не похожие на кварки. Позднее они были интерпретированы как цветные глюоны. Поэтому и Гелл-Манн, и Фейнман были правы: внутри протона есть кварки и кое-что еще.

Слишком просто

В моей альма-матер, Чикагском университете, продаются толстовки, на которых написано:

«Это работает на практике, а как насчет теории

Как кварки Гелл-Манна, так и партоны Фейнмана имели раздражающую особенность, которая выражалась в том, что они хорошо работали на практике, но не в теории.

Мы уже обсуждали, как кварковая модель помогла организовать зоопарк адронов, правда, с помощью безумных правил. Партонная модель использовала другие безумные правила, но на этот раз для интерпретации изображений внутренней структуры протона. Правила партонной модели очень просты: для выполнения расчетов вы должны предположить, что фрагменты внутри протона — кварки, партоны, называйте как угодно — не имеют никакой внутренней структуры и не взаимодействуют друг с другом. Разумеется, они взаимодействуют с другими фрагментами, в противном случае протоны бы просто разлетелись. Однако идея партонной модели заключается в хорошем приблизительном описании того, что происходит за очень короткий промежуток времени на очень коротких расстояниях, без учета взаимодействия. И именно для получения доступа к этим коротким временным промежуткам и коротким расстояниям используется ультрастробоскопический наномикроскоп SLAC. Таким образом, партонная модель говорит о том, что с помощью этого инструмента вы должны получить четкое видение внутреннего строения протона, что и происходит на самом деле. Кроме того, вы должны увидеть и другие базовые строительные блоки, если таковые имеются, и это тоже происходит.

Все это звучит очень разумно, почти интуитивно очевидно — ничего особенного не может произойти за крайне короткий промежуток времени в очень маленьком объеме. Что в этом безумного?

Проблема в том, что, когда вы добираетесь до очень малых расстояний и очень коротких временных промежутков, в игру вступает квантовая механика. Когда вы принимаете во внимание квантовую механику, то «разумное, почти интуитивно очевидное» ожидание того, что в течение короткого времени в небольшом объеме ничего особенного произойти не может, начинает казаться весьма наивным.

Чтобы понять это, не вдаваясь слишком глубоко в подробности, рассмотрим принципы неопределенности Гейзенберга. Согласно первоначальному принципу неопределенности, чтобы точно определить положение, мы должны смириться с невозможностью точного определения импульса. Внести дополнение в первоначальный принцип неопределенности Гейзенберга потребовала теория относительности, которая связывает пространство со временем и импульс с энергией. Этот дополнительный принцип говорит о том, что для точного определения времени мы должны смириться со значительной неопределенностью в плане энергии. Сочетая эти два принципа, мы обнаруживаем, что для фиксации коротких временных промежутков с высоким разрешением мы должны смириться с плавающими показателями суммарного импульса и энергии.

Как ни странно, основная методика в экспериментах Фридмана — Кендалла — Тейлора, что мы уже отмечали, заключалась именно в измерении энергии и импульса. Однако здесь нет никакого противоречия. Наоборот, их техника является прекрасным примером использования принципа неопределенности Гейзенберга для достижения определенности. Дело в том, что для получения изображения пространства-времени с высоким разрешением вы можете — и должны — объединить результаты многих столкновений с различными показателями энергии и импульса, переданных протону. Затем в процессе обработки изображений принцип неопределенности, по сути, применяется в обратном направлении. Вы производите тщательно продуманную выборку результатов при различных энергиях и импульсах, чтобы извлечь точные позиции и показатели времени. (Для экспертов: вы делаете преобразования Фурье.)

Поскольку для получения четкого изображения вам необходимо допустить большой разброс показателей энергии и импульса, вы должны, в частности, предусмотреть возможность получения больших значений. При больших значениях энергии и импульса вы можете получить доступ ко многим «вещам», например к множеству частиц и античастиц. Эти виртуальные частицы возникают и исчезают очень быстро, не перемещаясь далеко. Помните, что мы столкнулись с ними только в процессе фиксации коротких временных промежутков с высоким разрешением! Мы не увидим их в обычном смысле, если не обеспечим энергию и импульс, необходимые для их создания. И даже тогда то, что мы видим, представляет собой не исходные нетронутые виртуальные частицы — такие, которые появляются и исчезают спонтанно, а реальные частицы, которые мы можем использовать для воссоздания исходных виртуальных частиц в процессе обработки изображений.

Вирусы могут ожить только благодаря более сложным организмам. Виртуальные частицы являются еще более иллюзорными, поскольку для их возникновения требуется помощь извне. Тем не менее они присутствуют в наших квантово-механических уравнениях, и в соответствии с этими уравнениями виртуальные частицы влияют на поведение частиц, которые мы можем видеть.

Казалось разумным ожидать того, что виртуальные частицы будут оказывать сильное влияние тогда, когда мы имеем дело с сильно взаимодействующими между собой частицами, вроде тех, которые составляют протоны. Ученые, занимающиеся квантовой механикой, ожидали, что чем глубже и быстрее заглядывать внутрь протонов, тем больше виртуальных частиц и сложных структур можно увидеть. И поэтому подход Фридмана — Кендалла — Тейлора не казался таким уж перспективным. Снимок, сделанный с помощью ультрастробоскопического наномикроскопа, представлял бы собой расплывчатое пятно[8].

Однако он не был расплывчатым пятном. На нем были различимы приводящие ученых в ярость партоны. Известный мудрый совет Эйнштейна гласит: «Сделайте все так просто, как только возможно, но не проще». Партоны представляли собой слишком простую концепцию.

Асимптотическая свобода (заряд без заряда)

Давайте представим, что мы — виртуальные частицы. Возникнув, мы должны решить, что делать в течение своей очень короткой жизни. (Это не так уж и трудно себе представить.) Мы оцениваем обстановку. Предположим, что неподалеку есть положительно заряженная частица. Если мы заряжены отрицательно, мы находим эту частицу привлекательной и пытаемся прижаться к ней. Если мы положительно заряжены, то мы находим другую частицу отталкивающей, воспринимаем как соперника или угрозу и отходим. (Ни того ни другого не происходит.)

Отдельные виртуальные частицы возникают и исчезают, но вместе они превращают сущность, которую мы называем пустым пространством, в динамическую среду. Из-за поведения виртуальных частиц реальный положительный заряд частично экранируется. То есть положительный заряд обычно окружен облаком компенсирующих отрицательных зарядов, которые находят его привлекательным. Издалека мы не чувствуем полную силу положительного заряда, поскольку эта сила частично отменяется отрицательным облаком[9]. Другими словами, эффективный заряд увеличивается по мере приближения и уменьшается по мере удаления. Эта ситуация изображена на рис. 6.2.


Рис. 6.2. Экранирование заряда виртуальными частицами. Центральная линия показывает положительно заряженную реальную частицу, зафиксированную в пространстве, — она движется вдоль вертикальной линии по мере прохождения времени. Эта реальная частица окружена виртуальными парами частиц — античастиц, которые возникают в случайные моменты времени, ненадолго разделяются и исчезают. Положительный заряд реальной частицы притягивает отрицательно заряженный элемент каждой виртуальной пары и отталкивает положительный элемент. Таким образом, реальная частица окружается и ее положительный заряд частично экранируется отрицательно заряженным облаком виртуальных частиц. Издалека мы наблюдаем меньший эффективный заряд, поскольку отрицательное виртуальное облако частично отменяет центральный положительный заряд


Это поведение прямо противоположно тому, которого мы ожидаем от кварков в кварковой модели или от партонов в партонной модели. Предполагается, что кварки в кварковой модели слабо взаимодействуют друг с другом на близком расстоянии. Однако если их эффективный заряд является наибольшим в непосредственной близости, то мы обнаружим нечто совершенно противоположное. Они будут наиболее сильно взаимодействовать друг с другом, когда находятся близко друг к другу, и слабее, когда они находятся друг от друга далеко и их заряды экранированы. Партоны в партонной модели при ближайшем рассмотрении должны выглядеть как простые отдельные частицы. Но если каждый партон обволакивает густое облако виртуальных частиц, вместо этого мы увидим те самые облака.

Очевидно, мы подошли бы гораздо ближе к описанию кварков, если бы смогли обеспечить эффект, противоположный экранированию, — создать облака, которые усиливают центральный заряд, а не отменяют его. Благодаря такому антиэкранированию мы могли иметь силы слабые на близком расстоянии, но возрастающие по мере удаления благодаря облакам. Электрический заряд экранируется, а не антиэкранируется, поэтому подходящую модель нам нужно искать в другом месте. Мы, конечно же, найдем ее, в противном случае я бы не поднял данную тему. Просто для того, чтобы мы могли говорить об этом, давайте временно называть гипотетическую антиэкранированную вещь зорядом. (Мы обнаружим, что обобщенный вид заряда, цветной заряд, ведет себя как зоряд.)

Если облака виртуальных частиц антиэкранируют зоряд, то сила реального, центрального зоряда увеличивается по мере удаления. Вы можете получить мощные силы на больших расстояниях из небольшого центрального зоряда, поскольку окружающие виртуальные частицы увеличивают его влияние. Таким образом, если кварки имеют зоряд вместо электрического заряда или в дополнение к нему, вы можете получить кварки, которые слабо взаимодействуют друг с другом на близком расстоянии, как предусмотрено кварковой моделью, и сильно взаимодействуют между собой, находясь друг от друга далеко. Вы даже можете сделать это, не прибегая к астрологии, как я объясню далее. Кроме того, вы можете получить партоны, не скрытые плотными облаками, поскольку их обусловленная облаком сила — их эффективный зоряд — убывает в непосредственной близости от них.

А что можно сказать по поводу неограниченного возрастания силы с увеличением расстояния, которое угрожало восстановить репутацию астрологии? Это возрастание является результатом, который мы получаем для изолированной зоряженной частицы. Однако большое облако имеет свою цену. (Можно сказать, что расширяющиеся облака стоят очень дорого.) Для создания такого возмущения требуется энергия, и вам понадобилось бы бесконечное количество энергии, чтобы обеспечить его поддержание на бесконечном расстоянии. Поскольку доступная энергия конечна, Природа не позволит нам создать изолированную зоряженную частицу. С другой стороны, мы можем иметь систему зоряженных частиц, в которой зоряды, например, компенсируют друг друга, или еще проще — зоряженную частицу и античастицу. Виртуальные частицы, которые находятся далеко от зоряда и отменяющего его антизоряда, не почувствуют какого-либо притяжения, и поэтому образование облаков не будет продолжаться. Это начинает все менее походить на оправдание астрологии и все больше на оправдание дьявольских правил кварковой модели! Одна и та же умная идея позволяет нам устранить все влияния, действующие на дальнем расстоянии, и удержать целые классы частиц.

Антиэкранирование — это ужасное слово. Стандартный, использующийся в области физики термин «асимптотическая свобода» не намного лучше[10]. Идея заключается в том, что по мере сокращения расстояния эффективный цветной внутренний заряд все больше приближается к нулю, но никогда его не достигает. Нулевой цветной заряд означает полную свободу — никакое влияние не оказывается и не ощущается. Эта степень свободы увеличивается, как говорят математики, асимптотически.

Как бы вы ее ни называли, асимптотическая свобода является перспективной идеей для описания кварков и оправдания концепции партонов. Мы хотели бы иметь теорию с асимптотической свободой, которая согласуется с основными принципами физики. Но существует ли такая теория?

Правила квантовой механики и специальной теории относительности являются настолько жесткими и мощными, что создать теорию, которая подчинялась бы обеим, очень сложно. Те, которые им соответствуют, носят название релятивистской квантовой теории поля. Поскольку мы знаем лишь несколько основных способов построения релятивистской квантовой теории поля, мы можем изучить все возможности, чтобы выяснить, обеспечивает ли какая-то из них асимптотическую свободу.

Необходимые расчеты выполнить нелегко, но возможно[11]. Следствием этой работы стало то, что каждый ученый надеется найти в результате научного исследования, но редко находит: ясный, уникальный ответ. Почти все релятивистские квантовые теории поля подразумевают экранирование. Это интуитивно очевидное, «разумное» поведение на самом деле почти неизбежно. Но не совсем. Существует небольшой класс асимптотически свободных теорий (с антиэкранированием). В своей основе все они подразумевают наличие обобщенных зарядов, введенных Янгом и Миллом. В этом небольшом классе асимптотически свободных теорий существует только одна, которая, похоже, может описать реальные кварки (и глюоны). Эта теория называется квантовой хромодинамикой или КХД.

Как я уже говорил, КХД подобна квантовой версии электродинамики — квантовой электродинамике, или КЭД, на стероидах. Она содержит в себе очень много симметрии. Для базового понимания КХД нам нужно разобраться в некоторых глубинных основах, используя понятие симметрии, и затем мы построим свое описание этой теории с помощью рисунков и аналогий.

Самая большая проблема может заключаться в представлении того, как связать все эти абстракции и метафоры с чем-либо реальным и конкретным. Чтобы размять воображение, давайте рассмотрим фотографию того, чего не существует. На рис. 6.3 изображены кварк, антикварк и глюон.


Рис. 6.3. Эта фотография сделана на Большом электрон-позитронном коллайдере (БЭПК), который работал в ЦЕРНе, близ Женевы, в 1990-е годы. Потоки частиц, или струи, возникающие в результате этого столкновения, ведут себя в соответствии с теоретическими предсказаниями для кварка, антикварка и глюона. Струи позволяют получить удобные для работы сведения об объектах, которые нельзя наблюдать как частицы в обычном смысле

Кварки и глюоны 2.0: верить — значит видеть

Разумеется, камера не создает снимки с подписями «кварк, антикварк, глюон». Полученное изображение нуждается в некоторой интерпретации.

Во-первых, давайте проанализируем изображенные объекты, используя повседневный язык. Мы видим сложные очертания магнитов и других компонентов ускорителя и детектора. Вы можете различить тонкую трубку, проходящую через середину. Это канал ускорителя, по которому движутся электроны и позитроны. На этом изображении показана лишь небольшая часть, соответствующая нескольким метрам машины БЭПК, заполняющей круговой тоннель длиной 27 километров. (Кстати, в том же самом туннеле теперь размещается Большой адронный коллайдер (БАК)[12], в котором вместо электронов и позитронов используются протоны и который работает на более высоких энергиях. В следующих главах мы поговорим о БАК подробнее.) Пучки электронов и позитронов, циркулирующих в противоположных направлениях, разгоняются до огромных энергий так, что их скорость практически достигает скорости света. Два луча пересекаются в нескольких точках, и там происходят столкновения. Эти особые точки окружены большими детекторами, которые способны отслеживать «искры» и фиксировать тепло, возникающее в результате столкновения частиц. Линии на изображении представляют собой следы частиц, а точки с внешней стороны говорят о количестве тепла.

Следующим шагом является перевод описания увиденного с языка поверхностного представления на язык глубинной структуры. Этот перевод подразумевает совершение концептуального шага, подобного скачку веры[13]. Прежде чем совершить этот скачок, давайте укрепим нашу веру.

Отец Джеймс Малли познакомил меня с самым глубоким и ценным принципом научного метода. (Данный принцип имеет и множество других применений.) Он сказал, что узнал его в семинарии, где тот назывался кредо иезуитов. Это принцип гласит:

«Блаженнее просить прощения, чем разрешения».

Я интуитивно следовал этому принципу на протяжении многих лет, не зная о том, что его одобряет церковь. Теперь я использую его на более систематической основе и с чистой совестью.

В теоретической физике кредо иезуитов замечательно взаимодействует с принципом Эйнштейна: «Сделайте все так просто, как только возможно, но не проще». Вместе они говорят нам о том, что мы должны делать самые радужные предположения относительно простоты вещей[14]. При получении отрицательного результата мы всегда можем попросить прощения и попробовать еще раз, не тратя времени на получение разрешения.

Принимая это во внимание, давайте выскажем простейшее предположение: как учесть то, что получается в результате столкновений, основываясь на наших представлениях о глубинной структуре физического мира. Согласно теории квантовой электродинамики (КЭД), электрон и его античастица, позитрон, могут аннигилировать друг с другом, произведя виртуальный фотон. Виртуальный фотон, в свою очередь, может превратиться в кварк и антикварк. Так гласит КЭД. Этот базовый процесс изображен на рис. 6.4.


Рис. 6.4. Пространственно-временная диаграмма базового процесса, в котором электрон и позитрон аннигилируют, образуя виртуальный фотон, который затем материализует пару «кварк — антикварк»


В этот момент ситуация становится рискованной, поскольку, как мы уже обсуждали, кварк (и антикварк) не могут существовать в изоляции. Они должны удерживаться внутри адронов. Процесс наращивания облака виртуальных частиц и нейтрализации цветных зарядов, ведущий от кварков к адронам, может быть очень сложным. Эти сложности могут затруднить идентификацию признаков исходных кварка и антикварка, подобно тому как, глядя на последствия камнепада, бывает сложно понять, из-за какого камня он начался. Однако давайте попробуем разобраться в этом в духе кредо иезуитов, надеясь на лучшее.

Первоначальные кварк и антикварк, которые возникают в результате столкновения, имеют огромную энергию и движутся в противоположных направлениях[15]. Теперь предположим, что формирование облака и нейтрализация цветового заряда обычно осуществляется плавно, путем создания и переупорядочения цветных зарядов без особых нарушений общего потока энергии и импульса. Мы называем этот вид создания частиц без существенного изменения в общем потоке мягким излучением. После этого мы увидели бы два роя частиц, движущихся в противоположных направлениях, каждый из которых унаследовал бы суммарную энергию и импульс породившего его кварка или антикварка. И это именно то, что мы наблюдаем в большинстве случаев. Типичная картина изображена на рис. 6.5.


Рис. 6.5. Двухструйный процесс, который мы интерпретируем как материализацию кварка и антикварка


Время от времени мы также наблюдаем жесткое излучение, которое оказывает влияние на общий поток. Кварк или антикварк может излучить глюон. Тогда мы увидим три струи вместо двух. На БЭПК это происходит примерно в 10 % столкновений. Приблизительно в 10 % от 10 % событий, то есть в 1 %, мы наблюдаем четыре струи и т. д.

Теоретическая интерпретация наших иллюстраций схематически приведена на рис. 6.6.

При такой интерпретации мы можем совместить несовместимое в том, что касается кварков. Несмотря на невозможность наблюдения изолированных кварков, мы можем видеть их благодаря потокам, которые они индуцируют. В частности, мы можем проверить, соответствуют ли вероятности получения различного количества струй, выходящих под разными углами и по-разному разделяющих суммарную энергию, вероятностям, вычисляемым для кварков, антикварков и глюонов с помощью теории квантовой хромодинамики (КХД). На БЭПК были произведены сотни миллионов столкновений, поэтому мы можем провести точное и детальное сравнение теоретических предсказаний и экспериментальных результатов.


Рис. 6.6. Схема излучения: а — как мягкое излучение создает струи адронов из кварка и антикварка; б — как жесткое излучение глюона, за которым следует большое количество мягкого излучения, производит три струи


Это работает. И именно поэтому я с полной уверенностью могу сказать, что объекты, которые вы видите на рис. 6.3, — это кварк, антикварк и глюон. Тем не менее, чтобы увидеть эти частицы, мы должны были расширить наши представления о том, что значит видеть что-либо, а также о том, что такое частица.

Давайте доведем рассмотрение наших изображений кварков/глюонов до логического завершения, соединив его с двумя мощными идеями — асимптотической свободой и квантовой механикой.

Между наблюдаемыми в виде струй кварками и глюонами и асимптотической свободой существует прямая связь. Ее легко объяснить с помощью преобразований Фурье, но, к сожалению, сами преобразования Фурье не так легко объяснить, поэтому мы не пойдем этим путем. Далее приведено объяснение, которое является менее точным, но требует большей фантазии (и меньшей подготовки).

Чтобы объяснить, почему кварки и глюоны появляются (только) в виде струй, мы должны объяснить, почему мягкое излучение является частым явлением, а жесткое излучение — редким. Асимптотическая свобода подразумевает две центральные идеи. Во-первых, цветной заряд, присущий элементарной частице — будь то кварк, антикварк или глюон, — является небольшим и не очень мощным. Во-вторых, облако виртуальных частиц, окружающее элементарную частицу, является разреженным вблизи от нее, но сгущается по мере удаления. Это окружающее облако увеличивает фундаментальную силу частицы. Именно окружающее облако, а не основной заряд частицы делает сильное взаимодействие сильным.

Излучение имеет место, когда частица выходит из равновесия со своим облаком. Тогда переупорядочение, которое восстанавливает равновесие в цветных полях, вызывает излучение глюонов или пар «кварк — антикварк», подобно тому как переупорядочение в атмосферных электрических полях вызывает молнии, а переупорядочение в тектонических плитах — землетрясения и извержения вулканов. Как кварк (антикварк или глюон) выходит из равновесия со своим облаком? Одним из вариантов может быть его внезапное выскакивание из виртуального фотона, как это происходило в экспериментах на БЭПК, которые мы обсуждали. Для достижения равновесия вновь образованный кварк должен нарастить свое облако, начиная от центра, где этот процесс инициируется его небольшим цветным зарядом. Соответствующие изменения невелики и постепенны, поэтому они производят лишь небольшие потоки энергии и импульса, то есть мягкое излучение. По-другому кварк может выйти из равновесия со своим облаком, если он будет вытолкнут квантовыми флуктуациями глюонных полей. Жесткое выталкивание может породить жесткое излучение. Однако поскольку присущий кварку цветной заряд мал, реакция кварка на квантовые флуктуации в глюонных полях часто бывает ограниченной, и поэтому жесткое излучение наблюдается редко. Вот почему более вероятно возникновение двух, а не трех струй.

Связь наших фотографий с основами квантовой механики является еще более очевидной и не требует такого сложного объяснения. Мы в очередной раз обнаруживаем, что многократное повторение одного и того же действия каждый раз дает разные результаты. Мы видели это и раньше при работе с ультрастробоскопическим наномикроскопом, который делает снимки протонов; мы видим это, работая с машиной творческого разрушения, которая делает снимки пустого пространства. Если бы мир вел себя классически и предсказуемо, то, несмотря на вложенный миллиард евро, БЭПК представлял бы собой очень скучную машину: каждое столкновение просто воспроизводило бы результат первого, и у нас была бы лишь одна фотография для изучения. Вместо этого наши квантовые теории предсказывают, что одна и та же причина может порождать разные результаты. И мы находим этому подтверждения. Мы можем предсказать относительные вероятности для различных результатов. Основываясь на многократных повторениях, мы способны детально проверить эти предсказания. Таким образом, мы можем справиться с краткосрочной непредсказуемостью. А последняя, в конце концов, полностью совместима с долгосрочной предсказуемостью.

Глава 7. Симметрия: отличия без различий