Тонущие города — страница 44 из 60

Помимо цементации в скальных породах применяют (реже) битуминизацию, т.е. нагнетание в породу через скважины горячего расплавленного битума или холодной битумной эмульсии.

Завесы инъекционного типа в рыхлых грунтах до недавнего времени строить не умели: скважины в них неустойчивы, цемент в мелкие поры песчаных грунтов не проникает. С 50–60-х годов начал использоваться новый способ создания глубоких противофильтрационных завес в рыхлых грунтах, разработанный во Франции. Этот способ сложнее цементации скальных пород, и суть его заключается в следующем. В скважину, пробуренную на полную глубину, устанавливают трубу с боковыми отверстиями по всей ее длине. Отверстия перекрыты манжетами — отрезками резиновой трубки, выполняющими роль клапана, позволяющего выходить раствору из трубы. Пространство между трубой с манжетами и стенками скважины заполняют цементно-глинистым раствором, создавая обойму. После схватывания этой обоймы внутрь трубы с манжетами опускают тампон, устанавливают его на уровне отверстий, перекрытых одной манжетой, и нагнетают инъекционный. раствор. Последний при определенном давлении отжимает манжету, разрывает обойму и проникает в грунт. Через каждую манжету нагнетают ограниченную (расчетную) порцию раствора.

Успех этой технологии обеспечивается также и применением] разнообразной рецептуры растворов: глиноцементных, глинистых, с химическими реагентами. Каждый состав раствора предназначен для уплотнения определенного вида, грунта. Технология манжетной Инъекции позволяет устанавливать наиболее рациональный порядок уплотнения грунта, начиная с более проницаемых слоев и кончая слабопроницаемыми.

Совершенно иной принцип лежит в основе создания мерзлотных завес. Здесь в грунт ничего не вводят, все остается на месте: и грунтовые частицы, и вода в порах между ними. Но воду по трассе противофильтрационной завесы замораживают и лед преграждает путь потоку подземной воды. Казалось бы, идеальный вариант, никаких материальных затрат, кроме энергии перевода воды из жидкого состояния в твердое. Но именно эти затраты столь значительны, что мерзлотные завесы — одни из самых дорогостоящих. Вместе с тем этот метод почти независим от геологических условий, он может применяться и в скальных породах, и в песчаных и глинистых грунтах. Именно поэтому его продолжают широко применять в городском подземном строительстве, особенно при строительстве метрополитенов.

В 60–70-е годы в практику строительства интенсивно входит новый метод, получивший название «стена в грунте». Это — метод не только противофильтрационный защиты выработок, но и строительства самих подземных сооружений.

Суть метода проста: в грунте делают глубокую узкую траншею с вертикальными гранями и заполняют ее материалом с нужными свойствами, получая стену в грунте. Главная задача при этом — обеспечение устойчивости граней траншеи при ее выемке и заполнении. Она решается использованием глинистого раствора, заполняющего траншею в течение всего процесса возведения стены.

Бурение скважин с промывкой глинистым раствором, обеспечивающим устойчивость стенок скважин практически в любых породах, известно давно. Давно освоили и бетонирование таких скважин для устройства свай. Но лишь в 50-х годах австрийский инженер К. Федер догадался сдвинуть эти сваи вплотную и построить вместе со специалистами итальянской строительной фирмы ИКОС первую бетоносвайную стену в грунте. В дальнейшем противофильтрационные стены-завесы, состоящие из ряда секущихся (с перекрытием сечения) свай диаметром 600–800 мм, были построены в разных странах, в том числе и в СССР.

Сооружение таких завес производится с помощью ударного бурового станка. Преимущество этой технологии — в возможности сооружать завесы в тяжелых грунтовых условиях, например в галечниках. Но производительность этого способа довольно низкая, а стоимость высокая. Кроме того, стена-завеса имеет много швов, что может отразиться на качестве завесы. Поэтому естественным был переход, во-первых, от свай к траншеям, а во-вторых, от ударного бурового станка к механизмам с большей производительностью.

Установив на опыте, что глинистый раствор обеспечивает устойчивость не только цилиндрических ч стенок скважин, но и плоских вертикальных граней траншей, разные организации и фирмы во многих странах стали применять для проходки траншей самое разнообразное оборудование: вращательные буровые станки на движущейся вдоль траншеи платформе, одноковшовые и многоковшовые экскаваторы, грейферы — словом, любое имевшееся оборудование, способное извлечь грунт из траншеи. И, наконец, разработали специализированное оборудование для проходки узких глубоких траншей, работающее по принципу либо бурения, либо копания. Одновременно разрабатывались и разные методы заполнения траншей различными материалами — бетоном, глиной, заглинизированным при проходке траншеи грунтом. Пионером этих работ в СССР был трест Гидроспецстрой.

Рис. 68. Применение степы в грунте при строительстве метрополитена мелкого заложения
1 — стена в грунте; 2 — уровень подземных вод

Одновременно с разработкой технологии и средств механизации был сделан еще один решающий шаг: расширение функционального назначения стен в грунте. Они стали не только противофильтрационными завесами, но и несущими конструкциями — стенами подземных сооружений и фундаментами (рис.68).

В 70-х годах несущие стены в грунте, одновременно выполняющие противофильтрационные функции, по широте использования в городском строительстве обогнали чисто противофильтрационные завесы этого типа.

Все рассказанное выше позволяет получить представление о достаточно больших возможностях современной техники, способной преодолеть трудности борьбы с водой при подземном строительстве. Но строительство — это только начало взаимоотношений с подземными водами, они продолжаются при эксплуатации готовых сооружений. Сюда входят задачи гидроизоляции подземных сооружений, создания и многолетней работы дренажных систем. С этими задачами техника также успешно справляется. Ведь, находясь, например, в метро, мало кто имеет повод задуматься над тем, что он спустился не только под землю, но и под воду.


Глава 5.ВЕНЕЦИЯ, НИДЕРЛАНДЫ…

СУДЬБА ВЕНЕЦИИ

2 декабря 1966 г., менее чем через месяц после бедствия, Генеральный директор ЮНЕСКО Рене Майо обратился к миру:

«От имени ЮНЕСКО я обращаюсь с торжественным воззванием к интеллектуальной и моральной солидарности человечества в интересах спасения и восстановления пострадавших культурных сокровищ Флоренции и Венеции.

Я обращаюсь с призывом к 120 государствам — членам ЮНЕСКО, и прежде всего к их правительствам, великодушно предоставить денежные средства, материалы и другую необходимую помощь, чтобы выполнить огромные по своему объему реставрационные работы…

Я призываю музеи, библиотеки, архивы и научные учреждения всех стран прислать своих специалистов, предоставить свои лаборатории и мастерские в распоряжение соответствующих итальянских учреждений, чьи помещения и коллекции пострадали от бедствия.

Я призываю писателей, художников, музыкантов, критиков, историков — имя им легион, — кто в своем творчестве вдохновлялся флорентийскими и венецианскими сокровищами, пожертвовать часть того, что они почерпнули, — они, как никто другой, знают, что никогда не смогут сполна возместить свой долг, ибо этот долг духовный, — и помочь нам своим талантом привлечь внимание общественности, тронуть человеческие сердца.

Я призываю миллионы и десятки миллионов людей, пусть всего лишь раз посетивших эти изумительные города и вернувшихся оттуда на всю жизнь духовно обогащенными, прислать в ЮНЕСКО хотя бы один доллар.

И, наконец, я призываю тех, кто никогда не видел Флоренции и Венеции и большинство из которых, вероятно, так и не будет иметь такого счастья, также внести свою скромную лепту: деньгами, трудом, частицей собственного сердца. Ибо невозможно сознавать себя человеком и оставаться безучастным к судьбе величайших сокровищ мировой культуры».

Небывалое наводнение, обрушившееся на Венецию 4 ноября 1966 г., приковало к судьбе этого города внимание всего мира. Это наводнение не только причинило большой ущерб городу и его культурным ценностям, оно показало, что город — на грани гибели.

Венеция — достояние не только Италии, она — жемчужина мировой культуры. Более десяти тысяч сооружений и произведений искусства в Венеции представляют исключительную историческую и художественную ценность. Уникален и неповторим сам город среди лагуны. «Венеция, — писал Гете, — это мечта, сотканная из воздуха, воды, земли и неба».

Судьба Венеции… Не ждет ли ее участь Атлантиды, не придется ли историкам будущего решать вопрос: Венеция — реальность или миф?

Венеция расположена на островах в середине мелководной лагуны в северо-западном торце Адриатического моря (рис.69). При первом взгляде на карту Венеции — ее исторического центра — можно увидеть два острова, разделенных Большим Каналом (канал Гранде), и рядом еще один остров — Джудекка. Эти острова, общим размером примерно 5x3 км, рассечены 180 каналами (рис.70), и считается, что Венеция стоит на 118 островах. С материком Венецию соединяет железнодорожный и автодорожный мост длиной 3,6 км. На материке расположены пригороды Венеции —

Местре и Маргера, представляющие собой крупные жилые и промышленные зоны. Пригородами считаются и острова в лагуне (Мурано, Торчелло, Бурано), и застройка песчаной косы, отделяющей лагуну от моря (Лидо, Пелестрина, Сан-Эразмо).

Берега Большого канала и бассейна Сан-Марко застроены дворцами. Великолепны Дворец дожей, пятикупольный собор Сан-Марко, ансамбль центральной площади — Пьяцца Сан-Марко и примыкающей к ней Пьяцетты. В городе 378 мостов, среди которых выделяется мост Риальто — первоначальное ядро города. Транспорт города только водный: водные трамвайчики (ва-поретто), катера, гондолы. Нет ни автомобилей, ни лошадей. Последним всадником в Венеции был Наполеон. Улицы узки, по ним едва могут пройти рядом несколько человек (рис.71). В городе около 400 площадей, но, собственно, этого названия заслуживает только Пьяцца Сан-Марко длиной 175 м и шириной 82 м, выложенная мраморными плитами.