Траектория жизни — страница 62 из 66

Чтобы уменьшить массу радиационного убежища, необходимо будет разместить его среди имеющегося оборудования, приборов, запасов пищи и воды. До отлета экспедиции с орбиты спутника Марса к Земле для радиационного убежища можно будет использовать и запасы топлива орбитального корабля, размещая его в цилиндрических баках относительно небольшого диаметра вокруг герметичных отсеков. При таком решении для радиационного убежища в основное время полета экспедиции дополнительных затрат массы почти не потребуется и практически весь объем герметичных отсеков можно сделать безопасным для радиации. Но после отлета к Земле объем, в котором придется жить экипажу экспедиции, придется сократить до минимального — с целью ограничения затрат массы на радиационное убежище.

Может появиться мысль о сокращении времени полета марсианской экспедиции для уменьшения затрат массы на радиационное убежище. Действительно, еще в конце шестидесятых годов В. К. Безвербым была предложена схема полета на Марс примерно с теми же, что и при обычной схеме, энергетическими затратами, но с длительностью экспедиции около двух лет. Однако если принять эту схему, то окажется, что время пребывания экспедиции на орбите спутника и на поверхности Марса сокращается до одного месяца. Это делает предприятие бессмысленным: затратить сотни миллиардов долларов, преодолеть колоссальное расстояние в космосе, и на исследование далекой планеты оставить меньше месяца? Для телевизионного шоу этого, может быть, и достаточно, но для разработчиков такая схема представляется похожей на предложение сыграть роль унтер-офицерской вдовы.

В связи с большой продолжительностью полета в системах обеспечения жизнедеятельности нужно будет использовать замкнутые системы по использованию кислорода и воды (с регенерацией углекислого газа, воды, как выделяемой экипажем в атмосферу при дыхании, так и технической, а также урины).

Чтобы представить характер марсианского комплекса при использовании жидкостных ракетных двигателей на орбитальном корабле можно привести результаты оценок массы основных составляющих. Масса планетного корабля, как и в предыдущем варианте, составит около 50 тонн. Масса орбитального корабля (заправленного) без возвращаемого аппарата — около 80 тонн. Масса возвращаемого аппарата — около 8 тонн. Масса разгонной ракеты — около 190 тонн. Общая масса комплекса перед стартом с низкой орбиты спутника Земли — около 300–400 тонн. Общая масса топлива, заправляемого в отдельные части комплекса, — около 250 тонн. Длина (при старте) примерно 40–50 метров.

Все это практически только качественные оценки. Они базируются на старых оценках изменений доз от ГКИ и от солнечных вспышек, на старых оценках необходимой массы радиационной защиты. Предполагалось, что марсианская экспедиция должна осуществиться в год максимальной активности Солнца, то есть когда оптимальная дата старта по энергетике совпадет с максимумом солнечной активности, иначе говоря, когда доза радиации от ГКИ в районе Марс — Земля снижается в два раза. Но доза радиации снижается, если активность Солнца достигает максимума (в одиннадцатилетнем цикле максимальная активность различна, и надо контролировать фактическую интенсивность ГКИ, причем в области пространства, расположенной ближе к Марсу, чем к Земле). Таким образом, к моменту реального планирования марсианской экспедиции требуется получить надежный экспериментальный материал по интенсивности ГКИ во время нескольких одиннадцатилетних периодов солнечной активности в районе Марс — Земля, а также произвести массовые оценки необходимой радиационной защиты в трехлетней экспедиции.

Если всерьез встанет вопрос об осуществлении марсианской экспедиции, то в самом начале работ придется решать еще одну проблему: проблему аварийного спасения. Длительный полет экспедиции вдали от Земли, без возможности оказания непосредственной помощи с Земли, диктует необходимостью полета не одного, а эскадры из двух-трех кораблей, которые могли бы оказывать помощь друг другу и в то же время не дублировали бы программы своих работ.

Наверное, когда-нибудь возникнет и задача полета людей к Венере. Из-за плотной атмосферы, в результате парникового эффекта давление близ поверхности Венеры составляет около 100 атмосфер, а температура около плюс 500 градусов по Цельсию. Вполне реален, однако, полет на орбиту вокруг Венеры и зондирование верхних слоев ее атмосферы аэродинамическими средствами.

Принципиально ничего невозможного нет и для полета человека к Юпитеру. Хотя он намного дальше, чем Марс и Венера, и лететь туда с обычной энергетикой около двух лет, а на возвращение потребуется лет пять. В отличие от пустынных поверхностей Луны, Марса и Венеры, напоминающих какие-то земные районы, Юпитер ни на что земное не похож. Скорее он напоминает погасшее Солнце. Думаю, что посадить корабль на эту планету никогда не удастся. Другое дело спутники этой планеты. Побывать на них как будто реально, но когда? Безусловно, эти задачи не представляются задачами сегодняшнего дня.


С идеями о полетах на другие планеты связаны и мысли, высказывавшиеся еще пионерами ракетной техники о космических поселениях. Причем расселение людей в космическом пространстве мотивировалось необходимостью.

Действительно, экологические проблемы, вставшие перед человечеством в XX веке, явились не только следствием безответственного расточительства природных ресурсов и безрассудного ведения промышленной и сельскохозяйственной деятельности, но и того, что Земля уже сегодня катастрофически перенаселена. По оценкам некоторых биологов для мирного сосуществования человека с природой необходимо было бы, чтобы население Земли не превышало 100–200 миллионов человек. А нас уже более 6 миллиардов, и народонаселение увеличивается.

Что нас ожидает?! Судьба саранчи, поедающей собственный дом? Как быть? Мысль о том, что космическая техника позволит решить проблему роста населения Земли, казалась мне в начале наших космических работ очевидной и одной из причин необходимости их развития. Приезжая на космодром на очередные запуски, я выступал перед местными инженерами с лекциями на тему «Зачем нужны полеты в космос» и пытался обосновывать их необходимостью решения проблемы перенаселения Земли. Позже, проведя для себя приблизительные расчеты стоимости космической эмиграции, и придя к мысли, что люди вряд ли захотят провести свою жизнь, по существу, в добровольной ссылке, я перестал выступать с такой аргументацией.

Мысли о возможности и необходимости создания космических колоний высказывал Циолковский еще в начале XX века.

Одно из наиболее ярких предложений по космическим поселениям принадлежит американскому физику Джерарду О’Нилу. Он разработал его с группой энтузиастов из Принстонского университета. О’Нил предложил несколько типов космических поселений — с населением от 10 тысяч человек до 20 миллионов. В последнем случае поселение должно было бы представлять собой два параллельных цилиндра, соединенных рамой, каждый из которых имеет диаметр 6,4 километра и длину 12 километров. Каждый цилиндр вращается вокруг своей оси со скоростью 0,53 оборота в минуту, что приводит к появлению на внутренней поверхности цилиндров, где обитают жители поселения центробежного ускорения, равного нормальному ускорению силы тяжести на поверхности Земли.

Цилиндры вращаются в противоположных направлениях для компенсации их кинетического момента, с тем чтобы он не мешал ориентировать поселение. Оси цилиндров ориентируются на Солнце. Часть стенок (примерно половина) прозрачна, и косо поставленные цилиндрические зеркала направляют свет от Солнца внутрь цилиндров. Длина зеркал равна длине цилиндра, а ширина соответствует ширине окон. Энергоснабжение поселения осуществляется с помощью тепловых электростанций, получающих энергию от Солнца с помощью двух параболических зеркал, расположенных на концах цилиндров, противоположных направлению на Солнце. На торцах цилиндров со стороны Солнца имеются причалы для кораблей.

Внутри цилиндров — нормальная земная атмосфера. На внутренней поверхности проложены основные транспортные магистрали, жилые помещения, заводы, общественные здания, магазины, здания с оборудованием, обеспечивающим функционирование поселения. Все это размещается как бы под единой холмистой крышей (крыша со стороны оси цилиндра: для жителей верх — ось цилиндра). Крыша покрыта грунтом, на котором растут деревья, трава, ведутся сельскохозяйственные работы, проложены прогулочные дороги, размещены пруды и озера. Одним словом, над жилыми и производственными помещениями воспроизводится земной ландшафт. В поселении осуществляется замкнутый кругооборот жизненного цикла с использованием как биологических, так и химико-механических методов. Строительные материалы, сырье, азот, углерод, водород доставляются с Земли, Луны или астероидов. Плотность населения составляет порядка 40 000 человек на квадратный километр, что примерно в четыре раза больше плотности населения в Москве! Иначе говоря, каждый цилиндр такого поселения — это город типа Нью-Йорка или Москвы с населением 10 миллионов каждый, но практически все жилые и производственные здания убраны под поверхность «земли».

Масса поселения может составить порядка 10 миллиардов тонн. Эта грандиозная величина сразу ставит вопрос: откуда взять такое количество строительных материалов? Авторы предлагают брать материал с Луны. Это предложение в какой-то степени связано с предлагаемым местом для поселения. Космические города предлагается разместить в четвертой или пятой точках Лагранжа системы Земля — Луна, расположенных на орбите Луны на равном расстоянии от Земли и от Луны. Французский математик Лагранж еще в XVIII веке показал, что тело, помещенное в одну из этих точек, будет сохранять устойчивое положение в системе Земля — Луна. Эта особенность точек Лагранжа может, по мысли авторов, несколько облегчить доставку материалов с Луны к месту строительства.

Добыча, доставка и переработка материалов представляется авторами следующим образом. На Луне создается горнодобывающая и горно-обогатительная промышленность с высоким уровнем автоматизации. Добытая полезная порода перерабатывается до нужной кондиции и засыпается в стандартные ковши. Ковши поступают на электромагнитную катапульту. Поскольку на Л