Трактат о научном познании для умов молодых, пытливых и критических — страница 25 из 35

тский шаг или, лучше сказать, скачок в развитии химии. Такое именно предположение и было сделано Д. И. Менделеевым, который составил систему химических элементов, а затем сформулировал опирающийся на нее закон периодичности их химических свойств. Используя этот закон, Менделеев даже сумел предсказать существование еще не известных элементов и более или менее подробно описал их предполагаемые свойства. Эти предсказания великого химика в дальнейшем были подтверждены экспериментально.

Так системный подход завоевал еще одну важную позицию.

Сыграл он значительную роль и в познании живой природы. На протяжении многих тысячелетий простые люди и ученые замечали особую периодичность, повторяемость в жизни животных и растений. Рыбы нерестятся не только в определенном месте, но и в определенное время; перелетные птицы точно узнают время отлета в жаркие страны; растения в определенное время суток раскрывают и закрывают свои цветки, расправляют и свертывают листья. Многочисленные попытки ихтиологов, орнитологов и биохимиков изучить эти явления в изолированном виде долгое время не давали результатов.

В начале нашего века шведский исследователь, один из первых лауреатов Нобелевской премии Сванте Аррениус высказал предположение, что цикличность в жизни растений в значительной степени связана с космическим фактором, с «деятельностью» небесных светил, потоком космических излучений.

В середине нашего столетия орнитологам и астрономам общими усилиями удалось показать, что многие птицы во время ночных перелетов ориентируются по звездам, а ихтиологи обнаружили, что рыбы точно фиксируют целую систему факторов: температуру и соленость воды, направление течения, рельеф морского дна, сейсмические волны, распространяемые подземными толчками, и т. д. и т. п.

Эти и многие другие обстоятельства еще отчетливее ставят перед нами задачу познания сложных систем взаимодействия самых различных объектов: далеких звезд, растений, подземных вулканов, морских рыб и птиц, совершающих ночные перелеты.

Во всех этих случаях системный подход не только помогает познавать сложные объективные системы, но и подталкивает ученых к постановке неожиданных познавательных задач, заставляет их задуматься над поиском новых и неожиданных связей, помогает глубже проникнуть в тайны научного познания.

Математика в научном познании

Знаменитый философ Иммануил Кант как-то заметил, что первая научная революция, возможно, связана с именем древнегреческого мудреца Фалеса (около 625—547 гг. до н. э.), которому приписывали доказательство геометрической теоремы о равнобедренных треугольниках. В некоторых старых учебниках ее так и называли теоремой Фалеса. До сих пор не известно, был ли именно Фалес первым греческим математиком, осуществившим процедуру геометрического доказательства, но, как бы то ни было, мы вправе предположить, что кто-то из древних мыслителей на самом деле впервые осуществил математическое доказательство на грани VII и VI веков до н. э. Почему же именно этот на первый взгляд вполне заурядный и привычный для каждого школьника прием математических рассуждений Кант считает признаком научной революции?

Математики древней Индии, Китая и особенно Египта и Вавилона располагали довольно обширными математическими познаниями. Они умели вычислять площади земельных участков, производить измерение высот различных, иногда очень больших предметов, располагали довольно сложными формулами, позволявшими им вычислять объем сельскохозяйственной продукции, размеры налогов, производить различные финансовые, военные и инженерные расчеты. При всем этом доказательство как особый математический или, лучше сказать, логический прием было им почти совершенно чуждо. Ученики воспринимали от своих учителей, чаще всего жрецов или писцов при правительственных учреждениях, готовые формулы без всякого доказательства и применяли их из столетия в столетие для решения сходных задач. Этим во многом объясняется медлительность в развитии восточной математики.

Древние греки были первым народом, который открыл важность логического доказательства для развития научной и прежде всего математической мысли. Энгельс настойчиво подчеркивал, что удивительная одаренность этого маленького народа обеспечила ему ту роль в истории, на которую не мог претендовать ни один народ. Этим он хотел, по-видимому, сказать, что основы современного мышления были заложены в древнегреческой науке и философии. Но почему именно древние греки открыли и изобрели доказательство? В чем сила этого приема мышления, почему именно эта сторона дела рассматривается Кантом и другими исследователями истории науки как поворотный пункт в ее развитии? Я попытаюсь хотя бы вкратце ответить на эти вопросы, хотя до окончательного их решения еще далеко.

В VII—VI вв. до н. э. в развитии древнегреческого общества наступил переломный момент. На побережье Малой Азии и Пелопоннесского полуострова вместо старых, тиранических государств начали возникать так называемые демократические города-государства — греческие полисы. Как вы знаете по школьным учебникам истории, это была демократия для рабовладельцев, но не для рабов. Однако внутри сообщества свободных граждан все решения должны были приниматься на основе голосования горожан, собиравшихся для обсуждения важных проблем на общие собрания. Чтобы склонить своих сограждан в ту или иную сторону, политические руководители, вожди различных группировок должны были убедить их в своей правоте, доказать правильность своей позиции. Очень скоро практика убеждения и доказательства была перенесена греческими мудрецами в другие области общественной жизни, прежде всего в сферу обучения и познания мира. Первоначальный смысл доказательства заключался в том, чтобы, пользуясь общими для всех правилами рассуждения, прийти к согласованному мнению или к истине. В дальнейшем под доказательством стали понимать последовательное выведение из некоторых принятых утверждений, называвшихся посылками или предпосылками, определенных следствий. Если посылки считались истинными и доказательство проводилось без нарушения принятых правил, то полученные из них заключения или следствия также рассматривались как истинные. Вскоре выяснилось, что из относительно небольшого числа бесспорных, очевидных или общепринятых посылок, не вызывавших ни у кого сомнения, на основе доказательства или процедуры логического выведения можно получить практически бесконечное число различных следствий. В обычной жизни мы переходим от одного утверждения к другому, опираясь главным образом на их содержание.

Создание математических и логических доказательств позволило в корне изменить этот привычный способ рассуждения. Математики осуществляют переход от одних утверждений к другим на основе заранее установленных правил, которые учитывают лишь форму данных утверждений, не касаясь по существу дела их содержания, то есть тех сторон и свойств действительности, к которым эти утверждения относятся или могут относиться и применяться. С примерами таких доказательств или, как их часто называют, формальных преобразований вы хорошо знакомы по курсу школьной математики.

В самом деле, беря ту или иную алгебраическую, геометрическую или тригонометрическую формулу, вы, пользуясь заранее установленными правилами, можете получить из них целый ряд других, необходимых вам для той или иной цели формул, даже не задумываясь о том, каково значение входящих в формулы величин.

Какие же преимущества сулит такой подход к математике?

Отныне ученик получает от своего учителя не готовый рецепт, который остается только зазубрить, но прежде всего метод математического рассуждения, доказательства, а вместе с тем и способ открытия новых теорем. Учитель сообщает ранее полученные теоремы или аксиомы, то есть утверждения, принимаемые без доказательства, а также основные логические правила — рассуждения и формулы, позволяющие преобразовывать уже известные теоремы в другие. Мало того, что каждое доказанное предложение приобретает достоинство объективной истины, процедура доказательства снимает всякие сомнения в этом, но, что гораздо важнее, математические предложения становятся понятными. Каждый, кто обладает способностями и необходимыми познаниями, может сам открывать и доказывать такие теоремы.

Не стоит, впрочем, думать, что открытия рождаются всегда в самой процедуре доказательства. Гораздо чаще доказательство применяется для установления связи и взаимной зависимости утверждений, открытых в результате других творческих процессов, часто даже эмпирических наблюдений. Величайший мыслитель Нового времени Галилей недаром подчеркивает в одной из своих бесед, что Пифагор, прежде чем доказать свою знаменитую теорему, по-видимому, нашел заключенное в ней соотношение эмпирическим путем. Известно также, что Архимед, прежде чем привести строгие математические доказательства, например, своей знаменитой теоремы о квадратуре параболы, позволяющей выразить площадь фигуры, ограниченной кривой линией, через площадь более простого прямоугольника, сначала производил ряд чисто механических экспериментов. Он вырезал параболические фигуры и различные прямоугольники из папируса и взвешивал их, стараясь найти сначала весовое соответствие, а затем, найдя такое соответствие приблизительно, придал ему форму строго геометрического доказательства. Тем не менее открытие доказательства и формальных преобразований как основного механизма построения математики привело к ее удивительному расцвету в Древней Греции.

Между зарождением египетской, а затем вавилонской математики и Фалесом лежит почти тысячелетний период. За это время сделано немало: открыты важные арифметические правила, осуществлены некоторые геометрические построения.

И все же это несоизмеримо мало по сравнению с тем, что сделано за три столетия, отделяющие Фалеса от знаменитого александрийского математика III века до н. э. Евклида. Он, как известно, впервые в истории науки изложил стройную систему геометрического знания. В его «Началах» систематизированы почти все известные к тому времени основные теоремы геометрии и арифметики. Что, однако, особенно важно, эти знания не просто агрегат, не просто механическое соединение, не просто сумма различных, не связанных частей, так сказать, порций математической информации, а по