елить, к чему относятся его наблюдения, о чем они говорят. Наблюдая, например, различные положения стрелки на шкале монометра и описывая свои наблюдения, физик-экспериментатор четко представляет себе, что его интересует не то, что он непосредственно видит, не колебания стрелки, а давление пара в котле, энергия движущихся молекул. Так как он не может непосредственно ощущать это давление, забравшись, например, внутрь котла с перегретым паром, не может непосредственно измерить скорости и определить направление движения молекул газа, то ему надо уметь истолковывать свои наблюдения в понятиях кинетической теории газов. Это означает, что, прежде чем сделать соответствующую запись, физик, так сказать, в уме должен перевести положение стрелки на шкале на язык чисел, характеризующих давление пара в котле. Только после этого делается соответствующая запись. Последовательность таких записей, выполненная в форме таблицы, графика или колонок чисел, составляет описание данного наблюдения или эксперимента.
Так как на результаты описания могут влиять самые различные причины, то экспериментатор, чтобы исключить различные помехи и случайности, часто повторяет один и тот же эксперимент по нескольку раз. Повторяемость или воспроизводимость является одной из наиболее важных характеристик научных наблюдений и экспериментов. Она позволяет на основе статистических методов, иногда с применением ЭВМ, уменьшить вероятность ошибок, снизить погрешность измерений и дать наиболее точные количественные результаты.
Мы видим, таким образом, что научные описания совсем не простая вещь. Они не сводятся к обычным наблюдениям. Чтобы описание было правильным и соответствовало требованиям научности, необходимо:
1) учесть все условия, в которых проводится эксперимент, и различные причины и обстоятельства, влияющие на экспериментальный объект, приборы наблюдателя;
2) выразить результаты наблюдении и числе, та есть воспользоваться процедурой измерения, а если нужно, то и вычисления, подвергнув первоначальные «сырые» данные статистической обработке;
3) истолковать полученные результаты правильно, то есть отнести их не к приборам, побочным условиям и факторам, не к состоянию наблюдателя, его профессиональным- навыкам, зоркости, внимательности или утомленности, а к изучаемым объектам (давление пара в котле и т. д.).
Мы, следовательно, приходим к выводу, что система описаний отнюдь не так проста, как может показаться, она имеет сложную структуру, в ней более или менее отчетливо прослеживаются различные отношения между объектами, средствами наблюдения, исследователями, методами обработки данных. К тому же описания имеют смысл не сами по себе, а лишь внутри данной науки и прежде всего в связи с той или иной теорией.
Наконец, нам необходимо выделить в качестве особой подсистемы, связывающей знания с материальным миром, совокупность материальных и воображаемых моделей. Я уже говорил о них во второй главе. И сейчас хочу обратить ваше внимание на то, что они играют в научном познании роль, весьма отличающуюся от той, которая выпадает на долю математических и теоретических моделей.
Модели первых двух типов непосредственно относятся к материальным объектам, отражают их, фиксируют в себе наиболее важные черты таких объектов.
Модели двух последних типов относятся к научной теории. Они либо выражают и передают сведения о ее формальной структуре, либо служат для превращения этой последней в содержательную, теоретическую систему.
Материальные и воображаемые модели, хотя и очень условно, можно назвать «сгустками знаний». По существу, чтобы построить уменьшенный макет электростанции или механическую модель ДНК, как это делал Уотсон, нужно очень много знать о соответствующих объектах. Модели подобного рода служат для дальнейшего уточнения, проверки и создания некоторых новых знаний в рамках уже имеющихся. Результаты, полученные при исследовании таких моделей, ценны не сами по себе. Они приобретают значение, когда их переносят с моделей — объек-тов-заместителей и применяют к действительным объектам.
В реальном научном познании все подсистемы науки: теория, метод, описание эмпирических знаний, модели различных видов и т. д.—так тесно связаны, так иногда переплетаются, что отделить их, провести такую грань между ними почти невозможно.
Здесь, если хотите, перед нами в новом обличии предстает гордиев узел.
Однако и сейчас наша цель — не разрубить его, а разобраться. Но теперь это сделать гораздо легче. Я думаю, что хорошим подспорьем послужит для нас один эпизод из истории современной физики.
Люди давно интересовались проблемой времени. Мы знаем, что время необратимо, что оно имеет как бы одно-единственное направление: из прошлого в будущее. Известно также, что оно объективно, так как не зависит от воли и сознания людей, существует вне их и измеряется с помощью циклически повторяющихся регулярных ритмических процессов. Такие процессы мы наблюдаем при колебании обычного маятника или колебания атома внутри молекулы, молекулы в кристаллической решетке и т. п., и все же этих сведений очень мало для того, чтобы ответить на вопрос «Что такое время?» с той же точностью и определенностью, с какой мы можем сейчас ответить на вопросы: «Что такое глина?», «Какова высота Останкинской телебашни?» или «Какова форма околосолнечной орбиты Земли?» Вот почему каждая новая крупица знания о времени вызывает пристальное внимание физиков. Решая некоторые уравнения, связанные со специальной теорией относительности, физики получили отрицательное значение для времени.
Что это могло означать?
Так как данное уравнение принадлежало к теории, хорошо зарекомендовавшей себя во многих других случаях, то просто отмахнуться от этого значения, счесть его математическим казусом было бы неразумно.
Поэтому было выдвинуто предположение, что физический смысл этой отрицательной величины дает понятие «обратное направление времени».
Эта интерпретация повлекла за собой необходимость ответить на другой вопрос: «Каковы физические свойства времени с обратным направлением, как протекают в нем те или иные физические процессы времени?»
На первом этапе пришлось воспользоваться воображением, придумать те или иные модели, дающие хотя бы неполный ответ на эти вопросы.
С помощью этих воображаемых модельных процессов физики уже яснее представили себе, в каких экспериментах и с какими объектами можно проверить гипотезу об обратном направлении времени. Затем они действительно сконструировали экспериментальную установку, в которой не наблюдавшийся ранее тип распада элементарных частиц должен был подтвердить данную гипотезу. Во время эксперимента были отсняты десятки тысяч кинокадров, на которых были запечатлены «треки», то есть линии движения различных микрообъектов. Затем они были тщательно измерены и подвергнуты математической обработке. И хотя данный эксперимент не дал удовлетворительного ответа на вопрос об обратном направлении времени, он отчетливо показывает, как завязаны в одном узле теория, математический аппарат, интерпретация, гипотеза, модель, эксперимент, измерение, вычисление, описание и т. д. Эксперимент этот показывает также, что не все проблемы решаются наукой просто и с первого подхода, что в мире науки, в мире научного познания достаточно места для всех, кто обладает пытливостью и мужеством задавать природе нелегкие вопросы.
Ученые, познание, общество
Науку создают ученые. Это такая же избитая фраза, как «мебель делают столяры, а дома строят каменщики». Чтобы всерьез разобраться, в чем особенности научного познания, следует ответить на вопрос: в какой мере оно зависит от деятельности, квалификации, организованности ученых и в какой мере поведение ученых, их отношение к окружающему миру, в свою очередь, зависит от научного познания.
Это совсем не простой вопрос, и не надейтесь найти здесь окончательный и бесспорный ответ. Сами ученые часто задумываются над этим вопросом, и для его решения кое-что уже сделано. Но если он заинтересует и вас, то вы найдете много возможностей применить здесь свою любознательность и силы.
Ученые — члены общества, и так как общество не стоит на месте, меняется его экономическая основа, общественный строй, политическая и правовая организация, то и положение ученых в обществе меняется. Разные общества по-разному относятся к науке, и ученые по-разному относятся к различным общественным учреждениям, формам государственной и общественной организации. Весь этот круг отношений входит в понятие «мир науки».
Разумеется, все эти сложные взаимосвязи и переплетения причин не охарактеризовать в нескольких словах. Все же кое-что я попытаюсь здесь если и не рассказать подробно, то хотя бы обозначить контурной линией.
Некоторое время назад тот самый профессор Уотсон, который вместе с Криком открыл почти четверть века назад структуру ДНК, выступал в одной из комиссий конгресса США. Он говорил о том, что наука в наши дни достигла таких вершин, так много знает и умеет, что в ближайшие десятилетия, скажем, к началу следующего века, генетики смогут по своему усмотрению выводить нужные виды животных и растений, по заранее созданному проекту. Прав он или не прав, покажет будущее. Однако возможность управлять изменением наследственности живых существ, включая человека, свидетельствует не только о мощи научного познания, но и о власти человека над миром, и власть эта может быть использована в разных обществах по-разному.
Почти одновременно с сообщением о выступлении Уотсона я прочитал статью, в которой говорилось, что другой известный американский генетик Шэпир, выделивший впервые в чистом виде отдельный ген, прекратил свои многообещающие исследования. Выделение гена означало, что мы вскоре действительно научимся управлять отдельными наследуемыми признаками живых организмов.
Казалось бы, после такого крупного открытия только и продолжать свои исследования дальше. Но Шэпир прекратил их, опасаясь, что в условиях острой политической и классовой борьбы агрессивные военные круги и капиталистические монополии США смогут использовать его достижения против человечества, например, для того, чтобы превратить большинство населения земного шара в тупых послушных рабов.