Еще более странным оказалось строение геномов. Вспомните мантру: гены – это последовательности оснований, которые кодируют последовательности аминокислот, а из этих аминокислот складываются белки. По сути, гены представляют собой молекулярную матрицу для синтеза белков. Когда публикуется последовательность какого-то гена, авторов просят открыть доступ к данным для всех желающих, поместив их в государственную компьютерную базу данных. За десятилетия работы с генами в базах данных накопились последовательности тысяч генов из тысяч видов организмов. Теперь вы можете сесть за компьютер, набрать последовательность и увидеть, какому гену из какого организма она соответствует. И если сравнить какой-то геном с генами из баз данных и найти совпадения, можно понять, какие гены в этом геноме содержатся. При анализе всех геномов, прочитанных за два последних десятилетия, выяснилось одно обстоятельство, которое нельзя не заметить: в геномах мало генов. Гены – это та часть генома, в которой закодированы белки, но большая часть генома, по-видимому, не связана с синтезом белков. Последовательности генов, кодирующие белки, составляют менее 2 % ДНК человеческого генома. Таким образом, оставшиеся 98 % ДНК не содержат генов.
Гены – лишь островки в море ДНК. И за редкими исключениями такая картина наблюдается у всех видов от червя до мыши. Но если основная часть генома не содержит генов, кодирующих белки, зачем она нужна?
Помощь бактерий
После участия во французском движении Сопротивления во время Второй мировой войны французские биологи Франсуа Жакоб (1920-2013) и Жак Моно (1910-1976) начали изучать бактерий, чтобы понять, как они расщепляют сахара. Вряд ли можно найти другую тематику, которая казалась бы более отвлеченной и в меньшей степени связанной с физиологией человека.
Жакоб и Моно показали, что распространенная бактерия Escherichia coli может расщеплять два вида сахаров – глюкозу и лактозу. Бактериальный геном достаточно прост. Длинные последовательности ДНК содержат гены, в которых записана необходимая информация для синтеза белков, расщепляющих каждый из двух сахаров. Если в среде много глюкозы и мало лактозы, геном производит белки, расщепляющие глюкозу. В обратной ситуации синтезируется белок, расщепляющий лактозу. Хотя эта картина кажется простой и очевидной, тем не менее она стала основанием для революции в биологии.
Ученые обнаружили в бактериальном геноме две составляющие. Во-первых, есть гены, содержащие информацию о структуре двух белков, расщепляющих два вида сахаров. Это последовательности букв А, Т, G и С, которые транслируются в последовательности аминокислот в молекуле каждого белка. На концах этих последовательностей есть другие короткие последовательности букв А, Т, G и С, которые ничего не кодируют. Когда с этими фрагментами ДНК связывается другая молекула, происходит включение или выключение гена. Это второй компонент генома. Эти короткие фрагменты ДНК можно назвать молекулярными переключателями, которые контролируют активацию гена и запуск синтеза белка. В геноме бактерий гены и переключатели, контролирующие их активность, находятся в непосредственной близости друг от друга. В зависимости от того, какой сахар присутствует в среде, происходит молекулярная реакция, контролирующая включение того или иного гена и синтез соответствующего белка.
Жакоб и Моно выяснили, что бактериальный геном – это биологический механизм, обеспечивающий синтез белков в правильном месте и в правильное время. Работа этого механизма основана на двух компонентах – генах, кодирующих белки, и переключателях, определяющих место и время активации этих генов. За данную работу в 1965 году трое ученых были удостоены Нобелевской премии по физиологии и медицине[11].
За годы, прошедшие после награждения Жакоба и Моно Нобелевской премией, было показано, что такая двухуровневая организация процесса синтеза белка является общим правилом для геномов всех организмов. Животные, растения и грибы тоже имеют гены, кодирующие белки, и молекулярные переключатели, включающие и выключающие эти гены.
Это открытие помогает понять, что же определяет различия между клетками, тканями и органами. Тело человека – высокоорганизованный комплекс, состоящий из четырех триллионов клеток двухсот разных видов, объединенных в ткани, такие как кости, головной мозг, печень и скелет. Хрящевые ткани состоят из клеток, производящих коллаген, протеогликаны и другие компоненты, которые в сочетании с водой и минеральными компонентами обеспечивают хрящам гибкость и прочность. В нервных клетках образуется совсем не такое сочетание белков, как в клетках хрящевой, мышечной или костной ткани.
При включении генетического переключателя, которое обычно происходит в результате присоединения белков, активируется соответствующий ген, и начинается синтез белка
Вот в чем заключается сложность: все клетки тела содержат одну и ту же последовательность ДНК оплодотворенной яйцеклетки, из которой они произошли. ДНК в нервных клетках идентична ДНК в клетках хрящевой, мышечной или костной ткани. Во всех клетках тела содержится один и тот же набор генов. Но если во всех клетках содержатся одинаковые гены, следовательно, различия между разными клетками определяются тем, какие гены в этих клетках активно производят белки. Переключатели такого типа, какие были открыты Жакобом и Моно, стали ключевым элементом в понимании того, как геном создает разные клетки, ткани и тела.
Если геном – это рецепт, тогда гены – ингредиенты, а переключатели – инструкции, определяющие тип ингредиентов и порядок их добавления. Поскольку только 2 % генома соответствует генам белков, оставшиеся 98 % несут в себе информацию относительно того, какие гены и в какой момент должны проявлять активность.
Но как на основе инструкций генома формируется тело? И как происходят изменения генома, приводящие к образованию новых видов в истории жизни? В период работы над проектом “Геном человека” никто еще не подозревал, что небольшое количество генов и их разреженность в геноме – это лишь вершина айсберга.
Пальцы указывают путь
Когда-то моряки думали, что кошки с шестью пальцами приносят кораблю удачу. Считалось, что кошки с широкими лапами лучше ловят мышей, поскольку лучше держат равновесие в море. Капитан Стэнли Декстер разводил таких кошек и подарил одного котенка своему другу Эрнесту Хемингуэю, который в то время жил в Ки-Уэсте. Этот котенок Снежок стал родоначальником целой линии шестипалых котов, до сих пор живущих в доме Хемингуэя. Но эти кошки не только привлекают туристов; они сыграли роль в формировании новой концепции функционирования генома.
У людей тоже иногда бывают лишние пальцы. В среднем один человек из тысячи родится с дополнительным пальцем на руке или на ноге. В 2010 году в Индии родился мальчик с 34 пальцами. Лишние пальцы могут появляться со стороны большого пальца, со стороны мизинца или в результате расщепления промежуточных пальцев в форме вилки. Дополнительные пальцы со стороны большого пальца (так называемая преаксиальная полидактилия) особенно значимы в биологическом плане.
Кошки с полидактилией (“кошки Хемингуэя”) имеют широкие лапы с шестью или большим числом пальцев
В 1960-х годах ученые, работавшие с куриными эмбрионами, пытались понять, как в процессе эмбрионального развития образуются ноги и крылья. Конечности зарождаются на теле эмбриона в виде крохотных выростов, напоминающих тоненькие трубочки. За несколько дней (точное время разнится у разных видов) они увеличиваются, в них начинают формироваться кости, и удлиняющийся конец начинает походить на широкое весло. На этой расширенной поверхности постепенно формируются лодыжки, кисти и пальцы.
Ученые обнаружили, что путем удаления или перемещения клеток в области “весла” можно изменять число формирующихся пальцев. Если удалить крохотный кусочек ткани с растущего конца, развитие конечности останавливается. Когда это делали на ранних этапах развития, на конечности у эмбриона было меньше пальцев или их не было совсем. Когда это делали чуть позже, у эмбриона могло не хватать всего одного пальца. Все зависит от того, на какой стадии развития проводить эксперимент: удаление ткани на ранней стадии оказывает более заметное влияние на развитие эмбриона, чем вмешательство на поздней стадии.
Джон Сондерс и Мэри Гэсслинг из Университета Висконсина по неизвестным теперь уже причинам удалили крохотный участок ткани от основания растущего зачатка конечности. Этот фрагмент ткани не имел никаких опознавательных признаков, ничего выдающегося. Он расположен в той части “весла”, из которой в конечном итоге развиваются мизинцы. Исследователи извлекли кусочек ткани длиной менее миллиметра и пересадили его на противоположную сторону в основании “весла”, туда, где развивается большой палец. Запаяв эмбрион в скорлупе, они ждали окончания его развития.
Появившийся цыпленок выглядел неожиданно. Он был таким же, как все цыплята, – с клювом, перьями и крыльями. Но его крылья, в отличие от нормальных крыльев с тремя удлиненными пальцами, имели по шесть пальцев. Что-то внутри этого крохотного комочка клеток содержало инструкции для развития пальцев.
Вскоре аналогичные эксперименты начались и в других лабораториях. В 1970-х годах британские исследователи поместили крохотные кусочки фольги между этим участком ткани и остальной частью зачатка конечности. В результате на крыльях получилось меньше пальцев, чем обычно. Фольга служила барьером между фрагментом ткани и другими клетками. Напрашивался вывод, что какое-то вещество, выделяющееся из этой группы клеток, проходит через растущую конечность и активизирует рост пальцев. Когда фольга предотвращает диффузию, образуется меньше пальцев, а когда барьер устанавливают в другой части конечности, образуется больше пальцев. Но какое вещество выделяют клетки?
В начале 1990-х годов три лаборатории независимо друг от друга использовали новые методы для выделения этого белка и соответствующего гена. В процессе эмбрионального развития на основании гена синтезируется белок, который проходит через “весельную” часть зачатка конечности. Как обнаружили учен