Требуется сборка. Расшифровываем четыре миллиарда лет истории жизни – от древних окаменелостей до ДНК — страница 28 из 45

То, что Линч обнаружил в отношении беременности, открыло окно в гораздо более широкий мир. Геномы находятся в состоянии внутренней войны между прыгающими генами и силами, пытающимися их удержать. В этой войне рождаются изобретения, поскольку единственная мутация может распространиться по геному и со временем привести к революции.

Эти изменения – не то же самое, что перспективные монстры Гольдшмита. Революционные мутации не происходят в один присест. В каком-то участке генома может возникнуть небольшое изменение, но если измененная последовательность связывается с прыгающим геном, у следующих поколений она множится и распространяется.

Однако внутри генома идет и другая, гораздо более масштабная война, и об этом опять же рассказывает механизм беременности.

Приручаем взломщика

В плаценте, на границе между плодом и матерью, действует один весьма специфический белок – синцитии. Он локализуется в этой области и играет роль регулировщика движения в обмене питательными веществами и отходами жизнедеятельности между матерью и плодом. Многочисленные наблюдения показывают, что этот белок жизненно важен для здоровья эмбриона. Когда исследователи повреждали у мышей ген синцитина, животные росли и жили нормально, но не могли воспроизводиться. После оплодотворения плацента не формировалась, и эмбрион не выживал. Без синцитина мать не может создать функциональную плаценту, и плод не имеет возможности получать питательные вещества. Дефекты синцитина вызывают целый ряд нарушений в процессе беременности и у человека. У женщин с преэклампсией ген синцитина поврежден: белок производится, но не может правильно выполнять свою работу. В результате в плаценте запускается серия реакций, приводящих к патологическому повышению кровяного давления.

Исследователи из французской биохимической лаборатории начали изучать структуру белка, анализируя последовательность его гена. Как мы обсуждали выше в связи с работой Линча, если известна последовательность гена, ее можно проанализировать с помощью компьютерных методов и сравнить с последовательностями других генов, содержащихся в базах данных. Программа распознавания последовательностей проверяет целые гены и их отдельные короткие фрагменты на наличие какого-либо сходства с другими генами, которые уже были секвенированы. За несколько последних десятилетий в базы данных поступила информация о миллионах последовательностей белков и генов самых разных живых существ от микробов до слонов. Сравнительный анализ показал, что многие гены являются представителями семейств генов, возникших в результате удвоения, о чем мы говорили в главе 5. В случае синцитина исследователи также пытались найти сходство с другими белками, чтобы понять, что этот белок делает в процессе беременности.

Поиски выявили загадочное обстоятельство. Анализ баз данных показал, что синцитии не похож на белки каких-либо других животных. Не имеет он сходства и с молекулами из растений или бактерий. Найденные компьютером совпадения оказались неожиданными и непонятными: последовательность синцитина очень похожа на вирусную и местами идентична последовательности вируса иммунодефицита человека (ВИЧ), который вызывает СПИД. Почему у вируса такого рода обнаруживается сходство с белком млекопитающих, причем столь важным для поддержания беременности?

Прежде чем заняться синцитином, исследователям пришлось стать экспертами по вирусам. Вирусы – это кочевые молекулярные паразиты. В их геномах нет ничего, кроме генов, необходимых для инфицирования и репродукции. Они внедряются в клетки, проникают в ядро и в сам геном. Встроившись в ДНК, они начинают контролировать процесс и заставляют хозяйский геном производить копии вируса и вирусные белки вместо белков хозяина. Каждая инфицированная клетка хозяйского организма превращается в фабрику, производящую миллионы вирусных частиц. Чтобы вирус, подобный ВИЧ, мог перебираться из одной клетки в другую, ему нужно синтезировать белок, вызывающий слипание хозяйских клеток. Такой белок заставляет клетки сближаться и создает пути для переноса вирусов из одной клетки в другую. Он локализуется на границе между клетками и контролирует обмен между ними. Вам это ничего не напоминает? Наверное, напоминает, поскольку именно так действует синцитии в человеческой плаценте. Синцитии сближает между собой клетки плаценты и контролирует обмен молекулами между клетками матери и плода.

Чем больше исследователи узнавали, тем больше убеждались в том, что синцитии – истинный вирусный белок, потерявший способность инфицировать другие клетки. Это сходство между белками млекопитающих и вирусов привело к появлению новой идеи. В какой-то момент в отдаленном прошлом вирус внедрился в геном нашего предка. Этот вирус содержал версию синцитина. Но вирус не заставил геном нашего предка производить бесчисленные копии вирусных частиц, а был нейтрализован, потерял инфицирующую способность и был направлен новым хозяином на другую работу. Наш геном находится в беспрерывной войне с вирусами. В данном случае благодаря пока неизвестным нам механизмам инфекционная часть вируса отключилась, и вирус стал использоваться для производства синцитина в плаценте. Вирус принес в организм хозяина белок, а его собственный геном был вскрыт и использован для хозяйских нужд.

Далее исследователи проанализировали структуру синцитина у разных млекопитающих и обнаружили, что мышиная версия отличается от версии приматов. Сравнение баз данных показало, что появление синцитинов у разных млекопитающих произошло в результате разных вирусных инфекций. Версия приматов появилась тогда, когда вирус поразил общего предка всех ныне живущих приматов. Синцитины грызунов и других млекопитающих возникли в результате другого события, и у них свои версии этих белков. Поэтому приматы, грызуны и другие млекопитающие имеют разные версии синцитинов, произошедшие от разных захватчиков.

Наша ДНК – не только наследство наших предков. Вирусы встраивались в нашу ДНК и были пристроены к работе: борьба наших предков с ними была одним из многих источников изобретений.

Память зомби

В детстве, пока Джейсон Шеферд жил в Новой Зеландии и в Южной Африке, он все время приставал к матери с разными вопросами, и однажды она заявила ему, что он должен стать ученым и ответить на все свои вопросы самостоятельно. К окончанию средней школы он уже знал, что хочет заниматься медициной. Он начал интенсивный курс обучения, чтобы за несколько лет получить как предварительное, так и полное медицинское образование. В первый год обучения он прочел известную книгу Оливера Сакса “Человек, который принял жену за шляпу”. И эта книга изменила его жизнь. Вдохновленный Саксом, Шеферд перестал заниматься по медицинской программе и ринулся изучать молекулы и клетки, заставляющие работать наш мозг. Как он сам рассказывает, он искал ответ на вопрос, что делает нас людьми. Полем научной деятельности Шеферда стала память и ее потеря. Наша способность вспоминать прошлое в значительной степени определяет нашу способность учиться, наши отношения с другими людьми и функционирование в мире. Это вовсе не отвлеченная тема. Одна из самых серьезных задач нашего общества – борьба с нейродегенеративными заболеваниями. С увеличением продолжительности жизни старение мозга становится еще более серьезной проблемой. Потеря памяти и когнитивной функции сопряжены с чрезвычайно тяжелой эмоциональной, социальной и финансовой нагрузкой.

В последний год обучения в университете, подбирая тему дипломной работы по нейробиологии, Шеферд наткнулся на статью о гене Аге, вероятно участвующем в механизме формирования памяти. Когда мыши обучаются, у них этот ген включен. Более того, он проявляет активность в головном мозге в пространстве между нервными клетками. Возможно, ген Аге относится к числу генов, играющих важную роль в механизме памяти.

Через несколько лет после поступления Шеферда в университет развитие технологии достигло такого уровня, что ученые смогли создать мышей без гена Аге. Животные выживали, но имели целый ряд дефектов. Когда их запускали в лабиринт с сыром в середине, они могли добраться до сыра, но на следующий день не помнили устройство лабиринта. Мыши с нормальной памятью обычно его запоминают. В серии последовательных экспериментов выяснялось, что у мышей имеется специфический дефект формирования памяти. Известно, что у людей мутации гена Аге связаны с целым рядом неврологических нарушений, от болезни Альцгеймера до шизофрении.

Центром внимания Шеферда стали механизмы памяти и ген Аге. Он поступил в аспирантуру, чтобы изучать Аге с одним из тех ученых, которые впервые установили роль этого гена в поведении. После окончания аспирантуры он работал с человеком, определившим местонахождение гена Аге в геноме. В голове у Шеферда ген Аге присутствовал и в прямом, и в переносном смысле.

Обустроив собственную лабораторию в Университете Юты, Шеферд разработал экспериментальные методы для исследования работы белкового продукта гена Аге. Действительно, этот белок вовлечен в проведение сигналов между нервными клетками, важных для памяти и обучения. Чтобы ответить на свои вопросы, Шеферду предстояло выделить белок и изучить его структуру.

Очистка белка представляет собой многостадийную процедуру, суть которой заключается в отделении искомого белка от остального содержимого клетки. Процесс начинается с химического размягчения ткани (в данном случае ткани головного мозга) до жидкого состояния, а затем она поэтапно обрабатывается для отделения искомого белка от остальных белков. Этот белковый суп пропускают через серию колонок, на каждой из которых происходит отделение различных примесей. На одном из последних этапов жидкость пропускают через стеклянную колонку, заполненную специфическим гелем. На геле отделяются остаточные примеси и другие белки, и проходящая через него жидкость содержит только очищенный искомый белок. Шеферд провел все стадии процесса, получая на каждой стадии небольшое количество жидкости. Он нанес жидкость на последнюю стеклянную коло