Как и Мандевиль, я родом с прохладного дождливого острова, где идея выращивать хлопок кажется чрезвычайно экзотичной. Тем не менее в отличие от средневекового англичанина мне не пришлось путешествовать в Индию, чтобы найти хлопок в его естественном виде. Современные магазины товаров для рукоделия предлагают, по очень разумной цене, целые хлопковые коробочки, не отделенные от стебля. Предполагается, что их будут использовать для венков, гирлянд и цветочных композиций, однако в каждой из них содержится невероятная история эволюции семян, только и ждущая достаточно смелого любителя растений и приключений, готового попробовать вскрыть и препарировать коробочку. Вооружившись пинцетом, карманным ножом и парой острых зондов для микроскопа, я отделил среднего размера коробочку от стебля и направился в Енотовую Хижину.
Лежащая стеблем вниз на моем столе коробочка и вправду напоминала овцу, ее клочковатая белая спинка была мягкой, как старая фланель. Но когда я плотно сжал вату пальцами, то нащупал глубоко внутри комочки семян, полностью погруженных в волокна. По размеру коробочка оказалась 3 дюйма на 2 (7,5 на 5 см), весила одну восьмую унции (4 г) и до странности напоминала маленького крапивника, которого я ощипывал на этом же столе, исследуя перья для другой книги. И коробочка хлопка была так же легка, компактна и создана для полета. На ощипывание птички ушло добрых два часа кропотливой работы пинцетом: захватывания, дергания и сортировки более 1200 крошечных перышек. Оказалось, то была лишь детская игра. Меньше чем через минуту отделения волокон хлопка вручную я понял, что у меня нет шансов выпутать хотя бы одно-единственное волокно. Они переплетались и свивались так плотно, что я не мог вытащить одно, не затянув на всех остальных десятки, если не сотни узлов. Мой план аккуратно извлечь семена из ваты с треском провалился. Я надеялся не только очистить хлопок от семян и расчесать, но также подсчитать, рассортировать и измерить отдельные волокна — проделать с ними то же, что и с перьями. В итоге я прибег к ножницам, и все равно потребовалось нескольких десятков резких кромсающих надрезов, чтобы пробиться сквозь ватный шар. Конечным результатом стал сугроб из спутанных комьев хлопка и кучка жалких на вид семян, все еще косматых от неровно обрезанных волокон. На ум неизбежно пришла аналогия с отарой плохо стриженных овец.
Под микроскопом источник моих трудностей стал очевиден: у поверхности каждого семени пух торчал густо, словно плотно сросшийся дерн, так что я не мог разглядеть, где кончается оболочка семени и начинаются волокна. Беглый просмотр статьи о хлопке в энциклопедии Дерека Бьюли по семенам помог мне понять причину: они составляли единое целое. Когда дело касается семенной кожуры, растения вроде хлопчатника не следуют никаким правилам. Вместо защиты семени хлопчатник посвящает самый внешний слой оболочки делу распространения потомства. Полет и плавание (как мы скоро узнаем) оказались достаточным эволюционным стимулом, чтобы превратить отдельные микроскопические клетки в гигантские волокна длиной больше двух дюймов (5 см). Неудивительно, что их трудно распутать. Притом что каждый волосок толщиной всего в одну клетку, семя хлопчатника размером с полгорошины может запросто отрастить пуховую шубу из более чем 20 000 ворсинок. В коробочке среднего размера содержится 32 семени, что превращает ее в запутанное переплетение более полумиллиона нитей. Выложенные друг за другом, они растянулись бы больше чем на 20 миль (32 км).
Говорят, Эли Уитни вдохновило на создание его знаменитой машины лицезрение того, как дворовая кошка напала на курицу. Птица заполошно закудахтала и бросилась прочь, оставив пучки перьев, застрявшие в кошачьих когтях. Хлопковый волокноотделитель работает по такому же принципу, отрывая волокна от семени крючками, приделанными к большим вращающимся барабанам. Патентная заявка Уитни от 1793 г. изображала скромный деревянный ящик с ручкой для вращения и одним валиком. В эпоху пара и электричества эта технология быстро развивалась. (Сегодня современные громадины с компьютерным управлением могут перебрать, очистить, высушить и спрессовать 500-фунтовый тюк (227 кг) меньше чем за две минуты.) И во всем этом процессе прекрасно проявляется эволюционная цель хлопчатника: пушинки летают и кружат легкими облачками возле каждой машины «неистовой метелью», как выразился один газетный обозреватель XIX в. Одноклеточные ворсинки на семенах хлопчатника сочетают максимальную площадь поверхности с минимальным — в действительности почти неощутимым — весом. Посланные в полет ветром или машиной, пушинки остаются в воздухе и летают вокруг — именно так, как и было задумано семенами.
Распространение семян ветром приводит к образованию паттернов, которые биологи называют «семенной тенью». Ветра переменчивы, и даже самые лучшие аэродинамические свойства позволяют семенам поддерживать полет лишь некоторое время. Результатом является предсказуемая картина: большинство семян падают на землю достаточно близко к материнскому растению, образуя довольно плотную группу, которая по мере удаления от материнского растения становится все более разреженной, потом остаются одиночки, рассеянные все дальше друг от друга. Остается открытым вопрос, где заканчивается семенная тень, поскольку по-настоящему далекие переносы случаются слишком редко, чтобы их можно было изучать. Одной из немногих попыток проследить семена в атмосфере было исследование травянистого представителя астровых, мелколепестника канадского, или конизы канадской. При помощи дрона с липкими ловушками для семян исследователи обнаружили, что парашютики конизы поднялись с воздушными потоками минимум на 375 футов (120 м). Отсюда даже легкий ветерок мог унести их на десятки или сотни миль. Но мы знаем, что семена могут залетать намного выше и дальше. В Гималаях принесенные ветром неизвестные семена были обнаружены в расселинах на высоте 22 000 футов (6700 м), намного выше областей, где могут существовать растения. Никто не знает, как далеко эти семена залетают, но ветра приносят их в таком количестве, что они стали основой пищевой цепочки: грибы вызывают гниль семян, коллемболы едят грибы, а крошечные паучки охотятся на коллембол.
Однако лучшее свидетельство дальнего распространения пришло к нам не с горных вершин и не от случайного семени, занесенного в верхние слои атмосферы. Оно обнаруживается в тех самых закономерностях распределения видов, которые так восхищали Чарльза Дарвина во время его путешествия на корабле «Бигль», и в том простом факте, что растения, произрастающие в отдаленных местах, например хлопчатник на Галапагосских островах, не могли попасть туда никакими другими способами. Записи Дарвина не раскрывают в точности, когда он начал думать о распространении семян, но в течение пары лет после возвращения «Бигля» в Англию он принялся погружать все, от семян сельдерея до целых растений спаржи, в бутыли или баки с морской водой. Большинство семян хорошо прорастало после месяца в воде, а другие продержались дольше четырех, но Дарвин был разочарован, когда после первых двух-трех дней на плаву осталось всего несколько семян. Тем не менее он рассчитал, что за это время атлантическое течение унесет семена как минимум на 300 миль (483 км). Также он рассматривал вариант ветрового распространения семян, приплывающих на далекие берега, высыхающих там и улетающих вглубь суши вместе с бризом.
Эксперименты Дарвина сосредотачивались на растениях, которые можно было встретить в любом английском саду: капусте, моркови, маке, картофеле и т. д. Из этого скромного первоначального эксперимента он осторожно заключил, что дальнее распространение посредством океанических течений, а также ветра и птиц может объяснить заселение растениями таких островов, как Галапагосы. Но у него все же оставались сомнения по поводу того, насколько далеко могут путешествовать семена, а также по поводу их судьбы, когда они прибудут на место: «Вероятность, что семя упадет на пригодную для него почву и сумеет развиться и достичь зрелости, была бы чрезвычайно мала!» Если бы он поставил такой же эксперимент на хлопчатнике, он бы, наверное, ощутил бо́льшую уверенность.
Оказывается, тот же самый пух, который удерживает хлопок в воздухе, также помогает ему плавать на поверхности воды: в нем застревают пузырьки воздуха, которые придают семенам длинноволокнистых видов плавучесть как минимум на два с половиной месяца. Плотно растущие волоски также не позволяют воде проникнуть сквозь семенную оболочку — даже когда семя хлопчатника утонет, оно может сохранять всхожесть в соленой воде более трех лет. Теперь, получив генетические данные, установившие связь дарвиновского хлопка с прибрежным южноамериканским предком, исследователи обрели вполне ясное представление о том, как именно он преодолел 575 миль (926 км) от материка до архипелага. Унесенное в море бурей, или тем, что в науке о распространении семян именуется «чрезвычайным метеорологическим событием», то первое отважное семя потом плыло много недель по быстрому течению Гумбольдта и в конце концов оказалось на берегу, на каменистом галапагосском пляже. Оттуда оно могло продвигаться вглубь острова так, как представлял это Дарвин: подхваченное бризом. Но есть еще одна возможность, столь же вероятная, но куда более привлекательная. В засушливых низинах Галапагосов эндемичные вьюрки выстилают свои гнезда исключительно волокнами хлопка, и это позволяет предположить, что Дарвинов хлопок проделал последнюю часть своего путешествия в клюве Дарвинова вьюрка.
Кажется сомнительным, чтобы любое конкретное семя смогло найти себе хороший дом при помощи ветра или волн. Но при наличии времени и многократном повторении попыток обе стратегии оказываются результативными. В вопросе распространении семян на ветер полагается большее количество растений, чем на все остальные способы вместе взятые, — правда, обычно речь идет о расстоянии, измеряющемся в дюймах или футах. Но добавьте в уравнение океанские течения, и истории, подобные судьбе Дарвинова хлопка, станут, в сущности, обычным делом: по меньшей мере 170 других видов растений прибыли на архипелаг похожим способом. На самом деле то, что семена смогли добраться до Галапагосских островов, вряд ли можно считать подвигом, учитывая, как хлопок первоначально колонизировал Южную Америку: он пересек весь Атлантический океан, и не один раз, а два. Биогеографы называют это «чудом в квадрате», но подтверждающие это данные бесспорны. У видов американского хлопка имеются гены двух четко различающихся африканских предков, что придает неожиданный эволюционный поворот трансатлантическим связям, последствия которых интересны отнюдь не только ботаникам. В XIX в. перемещение хлопка через Атлантический океан легло в основу мировых событий: индустриализации, глобализации, подъема Британской империи, рабства и Гражданской войны в США.