Троянский конь цивилизации — страница 40 из 45

8 и 109 кюри в секунду. Если бы эти радиоактивные вещества вырвались наружу, то вместе с радиоактивными веществами естественного распада и радиоактивными веществами возможных отходов атомных электростанций они составили бы «мощное сообщество». Они уничтожили бы леса, отравили воду и урожаи. Клетки организмов, пораженные концентрированным действием радиоактивных веществ, погибают.

Именно поэтому, прежде чем строить первые атомные установки, были определены твердые стандарты и нормы допустимой концентрации радиоактивных веществ. Их придерживаются до сих пор, что говорит о совершенстве технических мер безопасности при работе с радиоактивными веществами. Но внимание! Мы живем в 70-е годы, и в мире действует лишь 75 атомных электростанций. Уже в 2000 г. их будет около 5500. Опасность того, что число «ядерных сообществ» будет возрастать, не исчезла. Именно поэтому необходимо и дальше совершенствовать технические меры безопасности.

С ростом числа атомных электростанций появится необходимость изолировать их от окружающей среды. В системе атомный реактор — человек — природа пока еще не все изучено. Наряду с использованием ядра в энергетических целях необходимо тщательно измерять степень естественного излучения всюду, где планируется размещение атомных электростанций и создание так называемых замкнутых охлаждающих систем, необходимо прослеживать путь радиоактивных веществ через растения и животных к человеку, развивать технику безопасности в рудниках и т. д.

Именно чувство ответственности мудрого, а потому прозорливого человека заставило человечество задуматься о дальнейшем. Ведь только представьте: к 2000 г. потребление энергии в мире по сравнению с 1965 г. повысится на 250 %. Если доля атомных электростанций в производстве электроэнергии в 1965 г. составляла менее 1 %, то к 2000 г. она достигнет 50 %! Но и после 2000 г. потребность в энергии будет расти громадными темпами. Если бы, например, в 2030–2050 гг. эту потребность мы захотели покрыть исключительно за счет атомных электростанций, то понадобилось бы пускать в строй ежедневно по две такие станции мощностью 1000 МВт.

В далеком будущем может не хватить и атомной энергии. Следует продолжать поиски. А так как к углю и нефти возврата не будет, не исключено, что человечество пойдет по пути совершенствования ядерной энергетики.

Мы уже говорили, что в трудную минуту человек всегда черпал вдохновение у природы. Чем умнее становился человек, тем совершеннее перенимал он ее опыт. Ведь и идею ускорения ядерной реакции он нашел в космосе. Высоко над нами субатомные частицы движутся с фантастической скоростью, скрывающей в себе энергию до 100 млрд. электронвольт. Если бы мы захотели их изучить, то вынуждены были бы подняться очень высоко. Чтобы сократить этот путь, человечество должно было бы спуститься под землю и построить там протонные синхротроны и синхроциклотроны, в которых ускорился бы ход процессов в ядерном ядре. Человек вырвал у природы новую тайну и начал создавать так называемые ускоряющие реакторы (ускорители). Но и это не все.

Чтобы уже через 50 лет каждый день не пускать в строй по два реактора, а следовательно, с такой же скоростью не придумывать и не строить при них защитные сооружения, мы обратили свой взор к звездам — небесным телам, которые светятся, то есть излучают гигантское количество энергии, практически не потребляя ее. Они светят одинаково интенсивно, не уменьшая своего объема, в течение всех тех столетий, что человек наблюдает их.

И человек постепенно подходит к раскрытию «звездной» тайны. По современным представлениям каждая звезда, по-видимому, является гигантским реактором, в котором, однако, происходит не только распад ядер, но и их соединение, синтез/Сложный процесс соединения легких ядер приводит к тому, что создается такое количество и такой энергии, которое способно компенсировать энергию, излучаемую поверхностью звезды в космическое пространство.

Звезда имеет определенный элементарный состав, определенную материю и гравитационные отношения. Под влиянием термоядерных реакций, происходящих в ней, температура от центра к поверхности, распределена неравномерно. Гравитационные и тепловые соотношения создают условия для определенных типов термоядерных реакций, а также для их времени и интенсивности. Звезда, так же как и реактор, доводит свою тепловую мощность до определенного уровня, а этому уровню затем соответствуют тепловые отношения на поверхности и внутри звезды.

В «реакторе» звезды, по-видимому, происходят термоядерные реакции, которые используют в 10 раз больше внутренней энергии, чем атомные реакции, о которых мы говорили до сих пор. Чтобы понять их, надо вернуться с конца таблицы Менделеева в ее начало, поскольку если до сих пор мы занимались ядрами тяжелых атомов, то теперь обратимся к ядрам самых легких атомов, особенно водорода и гелия.

Исследования показали, что масса ядра немногим меньше, чем сумма масс ядерных частиц — протонов и нейтронов, из которых состоит ядро. Разница, названная позднее дефектом массы, у легких элементов больше, чем у тяжелых, потому что, как только частицы ядра (нуклоны) соединяются в ядро, освобождается их энергия и соответственно уменьшается и масса возникшего ядра.

При термоядерных процессах мы используем энергию субатомных частиц и заставляем уже не только ядро отдавать нам часть «деструктивной» силы, которая его ослабляет, но и принуждаем каждую субатомную частицу работать так, чтобы она превращалась в новую, которая бы уже не разбивала ядра, а способствовала их вечному обновлению.

Основная задача в создании условий для использования термоядерной энергетики — достигнуть того, чтобы плазма (смесь атомов без электронов), сосредоточенная и сжатая магнитными полями, удерживалась в таком состоянии хотя бы около секунды. До сих пор удалось экспериментировать с плазмой лишь сотые доли секунды, Но и это обнадеживает, потому что показывает человеку путь, по которому он будет следовать в своих поисках. Более того, это вселяет надежду, что человек сможет решать свои энергетические проблемы, не задыхаясь в отходах, не спасаясь от распадающихся радиоактивных элементов.

Правда, ядерная энергетика уже вышла из пеленок. Она вступает в пору промышленного использования, а с этим связаны свои проблемы. Одной из таких проблем, например, является вопрос, что делать с отработанным ураном, который все еще содержит столько опасных радиоактивных веществ, что способен нанести серьезный вред многим экологическим системам. Проблема требует своего решения, и, конечно, сегодня нас мало утешает мысль о том, что у термоядерной энергетики такие заботы исчезнут. Единственным ее отходом будет газ гелий, который можно сравнительно легко улавливать и использовать.

Топливо атомных электростанций в отличие от будущих термоядерных после отдачи части энергии на производство электричества не исчерпало своей силы. В специальном оборудовании из него с помощью кислот извлекают остатки плутония и урана и некоторые другие продукты. Однако оставшиеся отходы на 99 % радиоактивны, а поэтому смертельно опасны для живых организмов и природы. И снова встает вопрос: как долго длится эта опасность?

Отходов ядерного топлива пока относительно мало, во всем мире их около 1500 куб. м. Но уже и этот объем причиняет нам немалые заботы. Отходы жидкие, а потому не только способны отравлять почву и воду, но и неудобны для транспортировки.

Трудность транспортировки последнее время пытаются устранить введением новой технологии обработки отходов. По новейшей методике жидкие отходы проходят по трубам, в которых к ним добавляется стеклянная пыль, и собираются в бронированных емкостях. Там вместе с пылью отходы плавятся. и превращаются в стекловидную массу, которая постепенно затвердевает и становится нерастворимой.

Но если вопрос транспортировки практически решен, то проблемы складирования остаются, ибо процессы распада в отходах не прекращаются. Возникает значительная тепловая энергия, которая не позволяет складировать отходы стабильными пластами — высокая температура и процесс распада действуют на упаковку и отходы проникают в почву или воду. Проблема до сих пор не решена, если не считать «решением» такие оригинальные предложения как, например, складывать отходы в виде пирамиды, которая должна быть очень высокой, чтобы овевающие ее ветры охлаждали отходы. Соперница пирамиде Хеопса!..

Имеются и более серьезные предложения. Отходы рекомендуется складировать в заброшенных соляных шахтах. Хотя выделяемое ими тепло и будет действовать на консистенцию соляных слоев, но опасность будет минимальной, ибо в соляных слоях нет воды и, следовательно, некому выносить отходы на поверхность.

В западном полушарии отходы еще очень часто сбрасывают в море. Однако соленая вода, тепло Ц внутренние процессы, происходящие в отходах, через определенное время нарушают структуру упаковки, и радиоактивные вещества проникают в планктон, кораллы, в рыбу и… на наш стол.

Так же нереально предложение отправлять отходы атомных электростанций на Луну или другие планеты. Разумно ли повышать и без того высокую радиоактивность космоса?

Следует на Земле самым серьезным образом задуматься об эффективном использовании радиоактивных отходов. Ведь мы уже заставили служить нам отходы- в виде ила. Обработанными отходами целлюлозно-бумажных предприятий мы кормим домашних животных. Извлеченная из нефти «вредная» сера широко используется для нужд химической промышленности и т. д. Подобным образом и «умирающие» топливные элементы из атомных электростанций смогут защищать наши сады от насекомых, способствовать затвердению эластичных пластмасс, стерилизовать продукты и лечить людей. Однако чтобы все это стало возможным, необходимо претворить в жизнь то, чего требовал от нового прогрессивного строя еще Карл Маркс — устранить углубляющийся разрыв между человеком и природой и использовать подчиненные человеку силы природы не для уничтожения, а во благо людей, Овладение одной из Сил природы — водой — некогда заложило славу Египта. Овладение энергией атомного ядра во много раз повысило экономический потенциал многих стран, особенно тех, где передовой общественный строй создал все условия для того, чтобы интересы человека гармонично сочетались с интересами природы как при использовании ее источников, так и при охране ее репродукционных способностей.