Царь всех болезней. Биография рака — страница 21 из 115

Раньше взаимодействия синтетической химии и медицины в основном завершались обоюдным разочарованием. Врач Гидеон Гарвей, живший в XVII веке, однажды назвал химиков “самыми бесстыжими, невежественными, напыщенными, жирными и хвастливыми людьми на свете”[206]. Взаимное презрение и враждебность между двумя этими дисциплинами сохранялись не одну сотню лет. В 1849 году Август Гофман, научный руководитель Уильяма Перкина в Королевском колледже, мрачно рассуждал о пропасти между медициной и химией: “Ни одно из этих веществ до сих пор не нашло применения, связанного с сохранением жизней. Нам не удавалось использовать их <…> для исцеления недугов”[207].

Впрочем, Гофман догадывался, что граница между синтетическим и природным мирами рано или поздно исчезнет. В 1828 году преподаватель Берлинской промышленной школы Фридрих Вёлер вызвал целую метафизическую бурю в науке, когда в результате нагревания цианата аммония, простой неорганической соли, получил мочевину – химическое вещество, вырабатываемое почками[208]. Эксперимент Вёлера – совсем непритязательный, на первый взгляд, – имел огромное значение для науки. Мочевина считалась “природным” веществом – но ее предшественником оказалась неорганическая соль. Тот факт, что вырабатываемое организмом соединение можно запросто создать в колбе, грозил подорвать устоявшиеся в рамках теории витализма представления о живых организмах: веками считалось, что химия жизни наделена особым мистическим свойством – жизненной силой, которую невозможно воссоздать в лаборатории. Эксперимент Вёлера опровергал эту теорию, доказавая, что органические и неорганические вещества взаимопревращаемы. Биология по своей сути тоже оказывалась химией: возможно, даже человеческое тело было не более чем сосудом с бурно реагирующими химическими веществами, этакой пробиркой с ногами, руками, глазами, мозгом и душой.

С кончиной витализма[209] эта логика неминуемо должна была распространиться и на медицину. Если в лаборатории можно синтезировать химические вещества, характерные для живых существ, то будут ли они работать в живых системах? Если биология и химия так тесно переплетены, способна ли молекула, полученная в колбе, влиять на внутренние процессы биологического организма?

Вёлер, врач по образованию, вместе с учениками и соратниками попытался перейти из мира химии в мир медицины. Однако синтезированные ими вещества были слишком примитивными для вмешательства в работу живых клеток.

И все же тогда уже существовали подходящие, более сложные химические соединения: лаборатории красильных фабрик во Франкфурте буквально ломились от них. Чтобы построить желанный мост между биологией и химией, Вёлеру только и надо было, что предпринять однодневную поездку из своей геттингенской лаборатории во Франкфурт. К сожалению, ни сам Вёлер, ни его студенты так и не сделали этого последнего шага. Широчайшая линейка молекул, без дела хранившихся на полках у немецких текстильщиков, с тем же успехом могла быть на другом континенте.


Только через 50 лет после эксперимента Вёлера продукты красильной индустрии наконец физически соприкоснулись с живыми клетками. В 1878 году в Лейпциге 24-летний студент-медик Пауль Эрлих, подыскивая себе тему для диплома, предложил использовать текстильные красители – разноцветные производные анилина – для окраски животных тканей. Эрлих надеялся, что такое окрашивание в лучшем случае позволит четче видеть ткани под микроскопом. Но, к своему изумлению, он обнаружил, что эти красители не затемняют весь препарат, а действуют избирательно. Производные анилина окрашивали лишь части клетки, вырисовывая одни структуры и не затрагивая другие. Складывалось впечатление, что они способны различать внутриклеточные химические вещества – избирательно связываться только с какими-то из них.

Эта молекулярная специфичность, столь ярко выраженная в реакции между красителем и клеткой, не давала Эрлиху покоя. В 1882 году, работая с Робертом Кохом, он обнаружил еще одну избирательную синтетическую краску[210], на этот раз предпочитающую микобактерий – микроорганизмов, которые, как установил Кох, вызывают туберкулез. Через несколько лет Эрлих обнаружил, что в ответ на введение животным определенных токсинов в их телах образуются антитоксины, связывающие и нейтрализующие эти яды с удивительной избирательностью (позже такие антитоксины описали как антитела). Он выделил из лошадиной крови сильнодействующую сыворотку против дифтерийного токсина, перебрался в Институт изучения и проверки сывороток в Штеглице, где наладил промышленное производство противодифтерийной сыворотки, а затем основал во Франкфурте-на-Майне собственную лабораторию.

Но чем шире Эрлих исследовал биологический мир, тем чаще возвращался к изначальной своей идее. Биологическая вселенная полна молекул, выбирающих себе партнеров, – совсем как хороший замок, который открывается только идеально подходящим ключом: токсины неразделимо связываются с антитоксинами, красители выделяют только определенные части клетки или ловко выхватывают из смеси микробов только один вид. Если биология, рассудил Эрлих, всего лишь изощренная игра химических соединений в “найди пару”, то вдруг какое-либо химическое вещество способно различать бактериальные и животные клетки и убивать болезнетворных микробов, не причиняя вреда больному?

Возвращаясь однажды с конференции в тесном купе ночного поезда из Берлина во Франкфурт, Эрлих воодушевленно описал свою идею двум коллегам:

Мне тут пришло в голову, что <…> возможно найти искусственные соединения, которые могли бы по-настоящему и избирательно лечить от тех или иных недугов, а не просто приносить временное облегчение того или иного симптома. <…> Такие лечащие средства априори должны уничтожать болезнетворных микробов напрямую – не “дистанционным действием”, а непосредственным прикреплением этого химического вещества к паразиту. Паразитов можно убить только в том случае, если препарат имеет к ним определенное отношение, специфическое сродство[211].

К тому времени остальные соседи по купе уже дремали. Однако этот мимолетный разговор в вагоне содержал в себе одну из важнейших медицинских идей в ее чистейшем, первоначальном виде. Концепция химиотерапии – использования специфических химических веществ для лечения больного организма – родилась среди ночи.


Эрлих принялся искать свои “лечащие средства” в знакомом источнике – сокровищнице красильной промышленности, сыгравшей огромную роль в его юношеских биологических экспериментах. Лаборатория Эрлиха находилась поблизости от процветающих красильных цехов Франкфуртской анилиновой фабрики и фирмы “Леопольд Касселла и К°”, и он мог без труда достать синтетические красители и их производные, всего лишь прогулявшись через долину[212]. Получив доступ к тысячам соединений, Эрлих затеял серию экспериментов, чтобы проверить биологическое действие этих веществ на животных.

Начал он с поисков антимикробных препаратов отчасти потому, что уже знал о способности красителей селективно связываться с клетками микроорганизмов. Он заражал мышей и кроликов паразитом Trypanosoma brucei,[213] вызывающим тяжелую, нередко смертельную сонную болезнь, а потом колол животным разные химические вещества, стараясь найти среди них те, что способны остановить инфекцию. Испытав несколько сотен соединений, Эрлих с сотрудниками получил первый антибиотик – производное ярко-рубинового красителя. Эрлих назвал его “трипановый красный”. Это название – болезнь плюс краска – вместило в себя почти век истории медицины.

Вдохновленный этим открытием Эрлих разразился залпом химических экспериментов. Перед ним разворачивалась целая вселенная биологической химии: молекулы с уникальными свойствами, космос, живущий по своим собственным законам. Одни компоненты, попав в кровь, превращались из инертных предшественников в активные вещества, другие, напротив, из активно действующих лекарств становились совершенно бесполезными соединениями. Некоторые выводились с мочой, другие откладывались в желчи или же распадались на части прямо в крови. Какая-нибудь молекула сохранялась в организме животного неизменной много дней, а ее химический собрат, отличавшийся всего несколькими атомами, исчезал за считаные минуты.

19 апреля 1910 года на многолюдном конгрессе по внутренним болезням в Висбадене Эрлих объявил, что открыл еще одну молекулу со “специфическим сродством”, настоящий фармакологический блокбастер[214]. Новое лекарство с загадочным названием “препарат боб” активно работало против бактерии Treponema pallidum, возбудителя сифилиса. В эпоху Эрлиха сифилис, “тайный недуг” Европы XVIII века, стал любимчиком, настоящей заразой бульварных газет[215]. Открытие лекарства от сифилиса должно было мгновенно вызвать фурор – и Эрлих к этому подготовился. Препарат боб, тайно испытанный в больничных палатах Санкт-Петербурга и повторно проверенный на пациентах с нейросифилисом в магдебургской больнице, показал поразительные результаты. Компания Farbwerke Hoechst AG[216] тем временем строила огромную фабрику для производства препарата в коммерческом масштабе.

Успешное применение трипанового красного и препарата боб – впоследствии названного сальварсаном, от латинского слова salvare, “спасать”[217], – доказало, что болезни можно рассматривать как неисправные замки, ждущие, чтобы к ним подобрали правильные молекулярные ключи. Теперь потенциально излечимые недуги выстраивались перед ученым в бесконечную очередь. Эрлих