Азбука фотографии
4.1. Этап 1: свет проходит через объектив
4.2. Этап 2: свет фокусируется на матрице, а камера (или фотограф) устанавливает параметры экспозиции
4.3. Экспозиция и число диафрагмы
4.4. Связь между выдержкой и диафрагмой. Экспопары
4.5. Автоматическая, полуавтоматическая и ручная установка экспозиции
4.6. Экспокоррекция
4.7. Вилка экспозамера
4.8. Этап 3: нажатие кнопки затвора и одновременное срабатывание системы ой фокусировки
«Святая троица» фотографии – затвор, диафрагма и система фокусировки, эти три базовых элемента фотоаппарата с момента рождения фотографии получили множество остроумных и популярных технических решений. Чтобы правильно выбрать параметры съемки, вы должны уметь управлять своей камерой и ориентироваться в ее устройстве.
Как работают эти три элемента и какую роль они играют в получении семейных, отпускных и прочих фотографий, мы рассмотрим, для наглядности обращаясь к традиционным «ручным» фотокамерам. Ведь при переходе от пленочной фотографии к цифровой ее базовые принципы ничуть не изменились: изображение объекта съемки формируется светом, пропускаемым через объектив.
4.1. Этап 1: свет проходит через объектив
Перед тем как запечатлеть пейзаж, портрет, натюрморт или что-нибудь еще (все это в дальнейшем мы будем называть скучными словами «объект съемки»), фотограф ловит изображение в видоискатель.
Чтобы получить фотографию этого объекта, нужно осветить фотопленку или в нашем случае ее аналог – светочувствительную матрицу – так, чтобы изображение на ней получилось резким и достаточно контрастным.
Словарь
Фотографы предпочитают говорить не «осветить пленку» или «осветить матрицу», а «экспонировать ее».
Хороший, четкий и резкий снимок получается лишь в том случае, если матрица получила нужное количество света в течение определенного времени. Для этого свет определенным образом пропускается через систему линз – объектив. Фотограф снимает с объектива крышку – и свет через его переднюю линзу попадает в камеру.
Объектив – главная и неизменная часть любого фотоаппарата: традиционного или цифрового, недорогой любительской камеры или профессиональной «зеркалки». Объектив представляет собой систему линз, фокусирующих свет так, чтобы рисуемое светом изображение на светочувствительном материале было резким и неискаженным.
4.2. Этап 2: свет фокусируется на матрице, а камера (или фотограф) устанавливает параметры экспозиции
Наверное, каждый пробовал сфокусировать солнечные лучи увеличительным стеклом, чтобы добыть огонь или хотя бы выжечь рисунок. Точно так же изображение фокусируется в фотоаппарате. Именно поэтому фотоаппарат нельзя направлять на солнце.
Чтобы понять, что происходит с лучом света, попавшим в объектив, обратимся к школьному курсу оптики. На рис. 4.1 схематически представлен объектив из единственной линзы.
Рис. 4.1. Объектив из единственной собирающей линзы фокусирует лучи света в точке F, называемой фокусом. Расстояние от фокальной плоскости, в которой лежит эта точка, до оптического центра линзы обозначено буквой f
Внимание!
Распространение лучей света в оптике принято изображать слева направо. При этом в нашем случае слева (перед линзами объектива) располагаются изображаемые предметы, а справа – их изображения.
Лучи света, падающие на линзу А, собираются в одной точке, то есть в фокусе этой линзы. Плоскость, в которой лежит данная точка, перпендикулярна оптической оси линзы О и называется фокальной плоскостью.
А теперь несколько определений. Заучивать их, разумеется, не нужно. Они понадобятся для понимания всего, что будет изложено дальше.
• Оптический центр линзы – это точка линзы, через которую лучи проходят без изменения направления.
• Оптическая ось линзы (О, см. рис. 4.1) – это прямая, которая является осью сим – метрии линзы и проходит через центры кривизны ее поверхностей. На оптической оси линзы находится ее оптический центр.
• Фокус линзы (F) – точка, в которой собираются лучи, освещающие линзу. Фокус собирающей линзы находится впереди, а фокус рассеивающей – позади ее оптического центра.
• Фокусное расстояние (f) (Focal Length) – это расстояние между фокусом линзы и ее оптическим центром. Оно зависит от кривизны поверхности линзы и свойств материала, из которого она изготовлена.
Правило
Хорошая, четкая фотография получается лишь тогда, когда расстояние между объективом и матрицей находится в соответствии с расстоянием между фотографом и объектом съемки. Если такого соответствия нет, то снимок получается нерезким, размытым и про него говорят: «Изображение не в фокусе». Следовательно, при съемке объектив нужно сфокусировать, то есть настроить систему линз таким образом, чтобы изображение обрело резкость.
Чтобы понять, как фокусируется объектив, обратимся к традиционному фотоаппарату. Вот в чем заключается ручная наводка на резкость: фотограф, поворачивая расположенное на объективе кольцо фокусировки, настраивает систему линз объектива так, чтобы изображение стало резким, или, другими словами, наводит на резкость. Линзы при этом перемещаются, и когда они займут определенное положение, изображение на пленке (в нашем случае – на матрице) сфокусируется, то есть примет резкие, четкие очертания.
Владельцу компактной цифровой камеры нет нужды выполнять эту операцию. В массовых моделях современных камер наводка на резкость выполняется автоматически, а системы линз перемещает специальный электромотор.
Фокусное расстояние и объективы
Разные объективы имеют разное фокусное расстояние, то есть промежуток от оптического центра объектива до плоскости матрицы. Фокусное расстояние измеряется в миллиметрах.
Главное
Фокусное расстояние определяет угол обзора объектива. Именно от фокусного расстояния зависит размер объекта съемки на фотографии.
Современные компактные и зеркальные камеры оснащаются одним объективом с постоянным или переменным фокусным расстоянием. У объективов с переменным фокусным расстоянием (зумом) указывается диапазон фокусных расстояний.
Исходя из величины фокусного расстояния все объективы делятся на нормальные, короткофокусные (широкоугольные), длиннофокусные (телеобъективы) и объективы с переменным фокусным расстоянием. Объективы, позволяющие изменять фокусное расстояние, называются варио– или зум-объективами.
С изменением фокусного расстояния меняются угол обзора объектива и перспектива. Чтобы пояснить все это, рассмотрим рис. 4.2. На нем изображены объективы с фокусными расстояниями f и f1, равноудаленные от объекта съемки. При этом фокусное расстояние f меньше, чем f1.
Рис. 4.2. Изображение, полученное объективом с коротким фокусным расстоянием f (а), крупнее: такой объектив охватывает более широкую панораму, чем длиннофокусный (б)
Как видно из схемы, изображение, полученное с помощью объектива с коротким фокусом, гораздо крупнее, чем получающееся у длиннофокусного объектива. Другими словами, короткофокусный объектив охватывает более широкую панораму, чем длиннофокусный, и его угол обзора значительно шире. Именно поэтому короткофокусные объективы иначе называют широкоугольными. Снимок, сделанный широкоугольным объективом, включает больше объектов, чем фотография, полученная штатным объективом с той же точки.
Что происходит с изображением при изменении фокусного расстояния объектива? С увеличением фокусного расстояния угол обзора объектива сужается, а широкая панорама сокращается до небольшой области пространства. В длиннофокусных объективах удаленные предметы кажутся крупнее и ближе друг к другу.
С уменьшением фокусного расстояния «угол зрения» объектива увеличивается, зона охвата кадра расширяется, а предметы на нем уменьшаются и удаляются. На рис. 4.3 два снимка одной и той же панорамы сделаны с использованием разного фокусного расстояния.
Рис. 4.3. Фокусное расстояние определяет масштаб изображения в видоискателе: первый снимок (а) сделан широкоугольным объективом, а второй (б) – длиннофокусным
Несмотря на разнообразие объективов, все они устроены и работают одинаково: фокусируют проходящие через линзы лучи света на светочувствительной пленке или, если речь идет о цифровых камерах, светочувствительной матрице (сенсоре).
Кстати
Объектив состоит из нескольких линз, объединенных в оптические системы. Оптических систем в объективе может быть от двух до пяти.
Нормальные объективы, то есть объективы с фокусным расстоянием, примерно равным диагонали кадра, почти универсальны для всех видов съемок. Но на снимках, сделанных с расстояния менее 1,5 м, такие объективы дают большие искажения. Поэтому нормальные объективы не годятся для съемок крупным планом.
Фокусное расстояние нормального (штатного) объектива для большинства 35-миллиметровых фотоаппаратов находится в пределах 45–55 мм. Угол обзора такого объектива равен 40–50° и соответствует углу зрения человека. Поэтому снимки, сделанные стандартным объективом, не отвлекают внимание искаженной или непривычной перспективой, позволяя сосредоточиться именно на сюжете и объекте съемки.
Какой объектив считать широкоугольным, какой – нормальным, а какой – длиннофокусным? Смотря какая у вас камера! Таблица 4.1 поможет разобраться, какие фокусные расстояния для каких фотоаппаратов считаются малыми и большими.
Как правило, цифровые камеры снабжены умеренно широкоугольным объективом. Такой объектив зрительно удаляет объекты съемки, поэтому в кадр попадает больше предметов. Данное свойство позволяет снимать крупные объекты – дома, деревья, целые пейзажи.
Главный недостаток таких объективов станет вам ясен при взгляде на рис. 4.4 – они совершенно непригодны для съемки портретов с близкого расстояния. Способность «широкоугольников» изменять перспективу при съемке крупным планом приводит к тому, что черты лица сильно искажаются и оно становится похожим на карикатуру.
Рис. 4.4. На близких расстояниях широкоугольные объективы дают значительные искажения
Примечание
Существуют сверхширокоугольные объективы, которые называются «рыбьим глазом». Все прямые линии, не проходящие через центр, в них искажаются и закругляются (рис. 4. 5). Стоят такие объективы довольно дорого и применяются в профессиональной фотографии.
Рис. 4.5. Сверхширокоугольные объективы «рыбий глаз» искажают все прямые линии, не проходящие через центр
В каких случаях бывают полезны широкоугольные объективы?
• При съемке вне помещения. Обладатель «широкоугольника» захватит в видоискатель все, что ему нужно, и легко исключит из кадра все лишнее, приблизившись к объекту съемки.
• Объекты, расположенные вблизи фотографа, широкоугольный объектив увеличивает, а находящиеся поодаль – уменьшает. Например, если снимать широкоугольным объективом автомобиль со стороны облицовки радиатора, то он будет казаться особенно длинным и изящным. Рука, протянутая в направлении широкоугольного объектива, кажется больше головы ее обладателя.
Эти свойства «широкоугольника» позволяют увеличить глубину и объем фотографии, включив в сюжет объект на переднем плане. Но если забыть свойства объектива, приближающего и без того близкие объекты, то можно попасть впросак.
При съемке объектов с параллельными вертикальными линиями (к примеру, высоких зданий) не стоит наклонять фотоаппарат вверх или вниз. Если это сделать, то вертикальные линии на снимке сольются в точку. Порой такой эффект используют, чтобы подчеркнуть, например, высоту здания или увеличить перспективу для создания более эффектной композиции. Но в общем случае превращение вертикальных линий в наклонные («завал» линий) фотографы рассматривают как ошибку (рис. 4.6).
Рис. 4.6. Вертикальные линии зданий при съемке широкоугольным объективом превращаются в наклонные
Длиннофокусные объективы особо компактной конструкции называются телеобъективами, но в общем случае «телевиками» называют любые длиннофокусные объективы.
Увеличение фокусного расстояния приближает удаленный объект съемки. Такое приближение можно использовать, к примеру, для съемок животных в дикой природе, а также тогда, когда подойти ближе к предмету съемки по тем или иным причинам невозможно. Задний план при съемке «длинным фокусом» несколько размывается, а изображение становится плоским и неглубоким.
Главное свойство зум-объективов, которое отличает их от всех остальных, – переменное фокусное расстояние. Узнать камеру с зум-объективом просто: такой объектив выступает за переднюю панель корпуса больше, чем у камеры, обладающей постоянным фокусным расстоянием. Кроме того, зум-объективы помечаются не одним числом, а двумя (например, 38-380 мм). Эти числа определяют диапазон фокусных расстояний.
Кстати
Не стоит вести съемку на крайних положениях зума – качество снимков будет совершенно неудовлетворительным.
В компактных камерах применяются автофокусные зум-объективы. Они очень просты в использовании, так как не требуют фокусировки. Поэтому фотограф может посвятить все внимание сюжету кадра и выбору оптимального фокусного расстояния.
Важно!
Зум-объективы обладают меньшей светосилой, чем объективы с постоянным фокусным расстоянием. Следовательно, владелец камеры с мощным зум-объективом должен уделять больше внимания условиям освещения при съемке.
Чтобы показать возможности зум-объектива, рассмотрим несколько фотографий, сделанных цифровым фотоаппаратом посредством зум-объектива с диапазоном фокусных расстояний 8,9-35 мм, что в эквиваленте 35-миллиметровой камеры соответствует диапазону 71,2-280 мм. Фотографии сделаны в разных положениях зум-объектива: первая (рис. 4.7, а) – в положении объектива, соответствующем эквиваленту 35 мм, вторая (рис. 4.7, б) – 135 мм, а третья (рис. 4.7, в) – 280 мм.
Рис. 4.7. Съемка в разных положениях зум-объектива: а – в положении объектива, соответствующем эквиваленту 35 мм, б – 135 мм, в – 280 мм
Я задумал снять пейзаж. Как выбрать правильное фокусное расстояние? Задайте максимальный угол обзора, то есть выберите минимальное фокусное расстояние, и сделайте снимок.
Сфотографируйте тот же вид, выбрав среднее, а затем максимальное фокусное расстояние. Крайнее положение зум-объектива дает не очень хорошие результаты, так что границу между приемлемым и неприемлемым качеством снимка лучше выяснить опытным путем.
Сравните снимки и начинайте выяснять ответы на следующие вопросы. Какие искажения дает объектив? Наблюдаются ли искривление прямых линий, «завал» вертикалей? Какие из искажений можно исправить в графическом редакторе, а какие нет? Постепенно вы выясните, какие фокусные расстояния для каких объектов съемки дают наилучший результат.
Зум-объективом управляют с помощью рычажка, на котором указаны буквы W и T (рис. 4.8). Что это за буквы? Буква W (Wide Angle) означает широкоугольное положение зум-объектива, а Т – длиннофокусное. Нажимая на данный рычажок, вы изменяете положение объектива. На LCD-экране при этом положение объектива отражается на индикаторе (рис. 4.9).
Рис. 4.8. Рычажок для манипуляции фокусными расстояниями зум-объектива
Рис. 4.9. Индикатор положения объектива выводится на монитор камеры
Что такое съемка в режиме телефото? Так называют съемку зум-объективом в длиннофокусном положении. При этом удаленные объекты приближаются.
Диафрагма – устройство, дозирующее свет
Для получения качественного изображения светочувствительная матрица должна получить совершенно точно отмеренное количество света. Количество света и время, в течение которого этот свет освещает матрицу, регулируются очень точными механизмами, от работы которых качество фотографии зависит ничуть не меньше, чем от точной наводки на резкость.
Внутри объектива среди его оптических систем располагается устройство, регулирующее количество света, проходящего через объектив. Это устройство называется диафрагмой. Диафрагма состоит из тонких лепестков, которые могут раздвигаться и сдвигаться, увеличивая или уменьшая отверстие объектива (рис. 4.10).
Рис. 4.10. Так выглядит механизм диафрагмы со стороны объектива
Диафрагма влияет на степень освещенности снимка: чем шире она открыта, тем светлее кадр.
На фотографии слева (см. рис. 4.10) лепестки сведены так, что отверстие, через которое проникает свет, очень маленькое. Следовательно, количество света, которое пройдет через это отверстие, будет небольшим, а снимок может получиться темным (примерно как на рис. 4.11, а).
Чтобы увеличить количество света, который освещает матрицу, фотограф начал изменять положение лепестков диафрагмы (рис. 4.10, справа): отверстие, которое они закрывали, увеличилось, и теперь количество света, проходящее через объектив, будет значительно больше. Снимок при этом получится гораздо светлее (рис. 4.11, б).
Рис. 4.11. Снимок, сделанный при почти закрытой (а) и открытой (б) диафрагме
Глубина резкости и диафрагма
Диафрагма управляет не только количеством света, проходящим через объектив, но и глубиной резкости.
Определение
Расстояние между передней и задней границами резко изображаемого пространства называется глубиной резкости.
Не все объекты в кадре находятся на одинаковом расстоянии от камеры. Чаще всего сюжет имеет несколько планов. На резкость камера наводится (фокусируется) лишь по одному из объектов. Поэтому важно, насколько резко на снимке получится все то, что находится дальше или ближе фотографируемого вами объекта.
Важно!
Глубина резкости меняется в зависимости от фокусного расстояния объектива, расстояния до объекта и величины диафрагмы.
При съемке объектов, удаленных на разное расстояние, наиболее резко на снимке получится тот, на котором сфокусирован объектив. Предметы спереди и сзади этого объекта будут «расплываться» по мере удаления от точки, на которую наведен фокус. Но так как человеческое зрение несовершенно, то в определенном диапазоне расстояний на глаз они будут казаться резкими. Например, если предметы, расположенные на расстоянии от 3 до 7 метров от объектива, находятся в фокусе и выглядят на снимке достаточно резко, то говорят, что глубина резкости равна 4 метрам.
На рис. 4.12 приведен пример изменения глубины резко изображаемого пространства с помощью сфотографированных с одной и той же точки полосок с нанесенными на них расстояниями в дюймах. На фотографии верхней полоски более или менее резко изображены все цифры, которые находятся к фотоаппарату ближе, чем цифра 6. На средней полоске резко изображенной видна цифра 8. А на нижней полоске зона резкости расширена до цифры 10.
Рис. 4.12. Глубину резко изображаемого пространства можно изменять
Чем ближе камера находится к объекту, тем меньше глубина резкости. Если на цветок перед вами уселась красивая бабочка, то, наклонившись, чтобы заснять ее, вы получите превосходное изображение этой бабочки, но вот луг и даже ближайший к вам цветок или куст могут стать частью размытого фона. Если же вы попробуете снять тот же вид с расстояния 2–4 м, то шансы на получение хорошего, резкого изображения значительно увеличатся.
На рис. 4.13 первый снимок (а) сделан с расстояния менее 50 см, а чтобы сделать второй снимок (б), фотограф отошел от объекта съемки примерно на 5 м. Очевидно, что глубина резкости первой фотографии совсем невелика: и ближний, и дальний объекты изображены размыто, а в фокусе находится лишь средний объект. На втором снимке все предметы и фон изображены одинаково резко.
Рис. 4.13. Чем ближе к объекту съемки находится камера, тем меньше глубина резкости
Чем меньше фокусное расстояние объектива, тем больше размеры резко изображаемого пространства. Короткофокусные (широкоугольные) объективы имеют гораздо большую глубину резкости по сравнению со всеми остальными.
Глубина резкости тем больше, чем меньше открыта диафрагма. Закрывая диафрагму, фотограф увеличивает глубину резкости. Сравните две фотографии, приведенные на рис. 4.14. Первый снимок сделан с диафрагмой f/3,9, а второй – со значением диафрагмы f/10,7 (в следующем разделе вы узнаете, что чем больше знаменатель этой дроби, тем меньше степень открытия диафрагмы и тем у же отверстие, через которое проходит свет).
Рис. 4.14. Первый снимок (а) сделан с диафрагмой, открытой до f/3,9, и его глубина резкости ниже, чем на втором снимке (б), который сделан с прикрытой диафрагмой (f/10,7)
На первом снимке, сделанном с меньшей глубиной резкости, объект съемки четко выделяется на нерезком и размытом фоне. Прикрывая диафрагму, фотографы зачастую намеренно уменьшают глубину резкости и размывают фон, чтобы выделить главный объект снимка. Но при фотографировании пейзажа или интерьера цель фотографа иная – добиться максимальной глубины резкости.
Снимая с расстояния 5-10 м короткофокусным объективом и прикрыв диафрагму (до разумных пределов), можно добиться максимальной глубины резкости изображения.
Для съемки разных сюжетов нужна разная глубина резкости. Фотографируя пейзаж, для хорошей фокусировки и на переднем, и на заднем плане глубину резкости увеличивают, то есть прикрывают диафрагму.
Секрет
Так когда же открывать диафрагму, а когда прикрывать? Есть нехитрый секрет: для большой глубины резкости – большие значения диафрагмы, для малой глубины – малые.
Затвор – устройство, определяющее выдержку
Количество света, который попадает на матрицу, зависит не только от размера отверстия, сквозь которое он проходит, но и от времени, в течение которого она освещается. Чтобы ограничить время освещения матрицы, применяется специальный механизм – затвор. В компактных камерах он расположен сразу за объективом.
Затвор имеет два основных положения: «открыто» и «закрыто». Когда затвор открыт, свет воздействует на матрицу. Закрывая затвор, фотограф перекрывает доступ света к матрице.
Затвор – это механизм, который отвечает за выдержку, то есть за время, в течение которого освещается (экспонируется) матрица (или пленка). Чувствительность матриц такова, что время их экспонирования, то есть длительность выдержки, сократилось до сотых долей секунды. Следовательно, затвор – очень точный механизм.
Выдержка измеряется в долях секунды: 1/15, 1/60 и т. д. Произносится это так: «выдержка 15», «выдержка 60». Если говорят, что снимок сделан с выдержкой 125, то это означает, что свет освещал фотопленку или матрицу в течение 1/125 секунды.
Чтобы понять значение выдержки, посмотрим на рис. 4.15, на котором приведены два снимка одного и того же объекта (скоростного поезда), сделанные с разными выдержками. При съемке первой фотографии значение выдержки было установлено равным 1/1000 секунды. Вторая фотография была сделана при «длинной» выдержке – 1/60 секунды. Фон остался прежним, а изображение поезда получилось размытым так, что его скорость стала видна наглядно.
Рис. 4.15. Первая фотография (а) снята с выдержкой 1/1000 секунды, а вторая, на которой главный объект «размыт» скоростью движения (б), – с выдержкой 1/60 секунды
Этот эффект фотографы используют издавна. Искусственно увеличив время открытия затвора, они получают таким образом сеть светящихся линий, летящих вдоль темной улицы, «след» взмаха руки и другие интересные эффекты.
4.3. Экспозиция и число диафрагмы
Читая этот раздел, вы заметите, что понятия выдержки и диафрагмы употребляются, как правило, в паре. Объясняется это просто: выдержка и диафрагма определяют значение ключевого понятия фотографии – экспозиции.
Определение
Экспозицией называется количество света, воздействующего на светочувствительный материал (в нашем случае это матрица) за время его экспонирования. Интенсивность света, как нам уже известно, регулируется величиной диафрагмы, а время – продолжительностью выдержки.
Количество света, проходящее через объектив, зависит от величины входного отверстия объектива, то есть от его диаметра.
Главное свойство объектива – его способность пропускать свет – принято выражать величиной относительного отверстия объектива. Мы уже знаем, что относительное отверстие объектива равно отношению диаметра его входной линзы к его фокусному расстоянию. Это понятие нам нужно, чтобы численно выразить положения лепестков диафрагмы: для их описания пользуются числом, обратным относительному отверстию объектива, или диафрагменным числом объектива. Значения диафрагменных чисел можно видеть на специальной шкале оправы сменных объективов: 0,7; 1; 1,4; 2; 2,8 и т. д. (на этой шкале смежные числа отличаются в 1,41 раза).
В фотоаппаратах с ручным управлением диафрагменные числа, или диафрагму, можно устанавливать с помощью специального кольца на объективе. В современных же фотоаппаратах, снабженных системами электронного управления и индикации, применяются более мелкие деления – 1/2 или даже 1/3 ступени диафрагмы.
Очень часто диафрагму пишут не в виде числа (например, 8), а как дробь с буквой f (например, f/8). Если диаметр диафрагмы вдвое меньше фокусного расстояния, то говорят, что диафрагма равна f/2, а диафрагменное число равно 2. Это число часто записывают как f2, чтобы не связываться с дробями.
Стандартный ряд диафрагменных чисел – геометрическая последовательность, каждый член которой больше предыдущего в 1,4 раза: f2; f2,8; f4; f5,6; f8 и т. д. Таким образом, например, переход с диафрагмы f4 на f5,6 ослабляет поток света в два раза. Чем больше диафрагменное число, тем меньше размер диафрагмы и тем меньше света попадет на светочувствительный материал. Изменением диафрагмы добиваются, во-первых, нужного усиления или ослабления потока света, а во-вторых, изменения глубины резкости.
Конструкторы фотоаппаратов не всегда могут вписать значения диафрагмы в стандартный ряд диафрагменных чисел, соответствующих максимальному пропусканию света объективом. Поэтому ряд диафрагменных чисел многих объективов содержит нестандартные значения, например: 1,9; 3,2; 4,5.
4.4. Связь между выдержкой и диафрагмой. Экспопары
Мы уже знаем, что экспозицию определяет сочетание выдержки и диафрагмы.
Определение
Любое сочетание выдержки и диафрагмы образует экспозиционную пару, или экспопару
В предыдущем разделе говорилось о том, что длительность выдержки (то есть времени, в течение которого экспонируется матрица) измеряется долями секунды, а стандартные значения выдержки составляют геометрическую прогрессию (то есть ряд, в котором каждое последующее значение вдвое меньше предыдущего и вдвое больше следующего). В ряду 1, 1/2, 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250 и т. д. каждое последующее число означает сокращение времени освещения пленки.
Но ведь диафрагменные числа тоже изменяются пропорционально! Все это наводит на мысль, что получить одну и ту же экспозицию можно несколькими способами, пропорционально увеличивая или уменьшая значения выдержки и диафрагмы. Иначе говоря, для получения той же экспозиции при уменьшении выдержки на одну ступень нужно открыть диафрагму на одну ступень и наоборот. Это очень удобно, так как, чтобы найти оптимальное значение экспозиции, важно правильно сочетать диафрагменное число и выдержку, то есть найти верную экспопару.
Получается, что одному и тому же значению экспозиции можно подобрать несколько экспозиционных пар! Действительно, например, экспозиция с выдержкой 1/30 секунды и значением диафрагмы f8 может быть достигнута, если установить выдержку 1/60 секунды и диафрагму f5,6 или 1/120 секунды и f4 и т. д.
Секрет
Именно эта множественность решений открывает простор для творчества. Если фотограф хочет выделить объект на переднем плане и размыть фон, сохранив правильную экспозицию, то он может уменьшить выдержку, одновременно открыв диафрагму. При съемке движения для придания кадру динамичности фотограф может «смазать» объект, еще больше уменьшив выдержку и увеличив диафрагму.
Проще говоря, связь экспозиции с выдержкой и диафрагмой похожа на старое арифметическое правило: от перемены мест сомножителей их произведение не меняется. Самым наглядным объяснением этого правила будет рис. 4.16, на котором площадь прямоугольников – это экспозиция, определяемая сторонами этих прямоугольников: диафрагмой и выдержкой.
Рис. 4.16. Одно и то же значение экспозиции можно получить, пропорционально изменяя значения диафрагмы и выдержки
Раз экспопара однозначно определяет экспозицию, то решение напрашивалось само собой: поставить определенные экспопары в жесткое соответствие со специфическими режимами съемки. Именно это и было сделано по мере развития автоматики и электроники. Теперь кропотливая настройка и поиск нужных значений экспозиции превращаются в задачу выбора из меню подходящего режима, то есть нужной экспопары. Владельцу автоматической камеры даже не нужно знать значения диафрагмы и выдержки – экспозиционную пару параметров (а также многое другое) камера выберет сама!
Шаг изменения выдержки и диафрагмы называется экспозиционным числом, или стопом (Stop), и обозначается EV (Exposure Value). Экспозиционные числа – это условно принятый ряд вида -1, 0, 1, 2 и т. д. Каждое такое число обозначает сочетание двух факторов: освещенности объекта съемки и соответствующего ему значения выдержки и диафрагмы.
Как мы теперь знаем, шкалы выдержек и диафрагм построены по принципу удвоения параметров. При переключении любой из этих шкал на следующее значение количество света, падающего на пленку, увеличивается или уменьшается вдвое. Иными словами, изменить диафрагму или выдержку на один стоп означает изменить экспозицию в два раза. Например, если изменить выдержку 1/500 на три шага (или, как еще говорят, на три стопа), то она составит 1 / 60. Получается, что переход на n стопов изменяет экспозицию в 2n раз.
4.5. Автоматическая, полуавтоматическая и ручная установка экспозиции
Автоматический режим (Auto) используется для моментальной съемки «навскидку». Фотограф лишь наводит камеру на объект. При этом в некоторых моделях фотоаппаратов требуется выбрать фокусное расстояние, а в других – «приказать» камере сфокусироваться на каком-либо объекте. Далее автоматика камеры сама выбирает параметры экспозиции, а фотографу остается лишь нажать кнопку спуска затвора.
Как фотографировать в автоматическом режиме? Наведите камеру на выбранный объект и найдите такое положение, при котором объект окажется в центре кадра.
На экране фотоаппарата эта зона обычно помечена маркером. Нажмите кнопку спуска до половины для блокировки фокуса и параметров экспозиции. При этом в видоискателе отобразится значок автофокуса. Он подтвердит, что объект находится в фокусе.
Значок автофокуса отчего-то красного цвета! Это значит, что камера не может сфокусироваться на объекте. Повторяйте предыдущие шаги до тех пор, пока значок не покажет, что фокусировка достигнута. Когда это случится, нажмите кнопку затвора до конца. После этого некоторое время будет гореть индикатор, показывающий, что изображение записывается на карту памяти.
Пять главных правил съемки в автоматическом режиме
1. Ваша камера настроена так, чтобы в автоматическом режиме гарантировать хороший, резкий снимок (если только речь не идет об особых условиях съемки).
2. Лучшие фотографии получаются при естественном освещении и в открытом пространстве.
3. Чтобы главный объект получился на фотографии четким даже в тех случаях, когда он находится не в центре кадра, применяйте блокировку автофокуса.
4. Помните, что «дальнобойность» встроенной вспышки не превышает 3 м. Не пытайтесь фотографировать со вспышкой с большого расстояния!
5. Фотографируя в яркий солнечный день, а также объекты на ярком фоне, не забывайте о вспышке. Лучше всего переключить камеру в режим принудительного включения вспышки, что придаст вашим снимкам естественность и позволит лучше осветить объект.
Сюжетные режимы
Чтобы облегчить жизнь владельцев цифровых камер, производители фототехники догадались объединить параметры для типичных сюжетов, объектов и ситуаций съемки в так называемые сюжетные режимы настройки экспозиции. Они позволяют получать отличные снимки, не тратя времени на подбор параметров съемки.
Рассмотрим эти программы подробнее. В вашей камере каких-то из них может не быть, а какие-то могут добавляться – производство не стоит на месте.
Портретный режим (Portrait) создает художественно размытый фон, выделяя модель. Для этого камера выбирает малые диафрагменные числа так, чтобы фон был не в фокусе.
Спортивная съемка (Sport или Action) «останавливает» объект в движении, сохраняя его в фокусе. Некоторые камеры дополняют такие кадры режимом размытия, что подчеркивает динамику. Этот режим предоставляет лишь базовые возможности съемки объектов, движущихся с большой скоростью. Для достижения лучшего результата придется устанавливать экспозицию вручную.
Пейзажный режим (Landscape) подходит для съемки удаленных объектов. В этом случае камера выбирает длинную выдержку и большое диафрагменное число. Такой режим обеспечивает четкость переднего и заднего планов, а также оптимальную глубину резкости.
Ночной портретный режим (Night Portrait) используется при ночной съемке для получения сбалансированного освещения переднего и заднего планов снимка. Выдержка увеличена для лучшей проработки фона имеющимся светом.
Режим макросъемки (Macro, Supermacro или Close Up) применяется для фотографирования с близкого расстояния.
Кроме названных, имеется множество иных вариантов: Пляж/Снег, Сумерки/Рассвет, Музей, Фейерверк, Панорама и т. д.
Полуавтоматический и ручной режимы
После всего прочитанного многие решат не затруднять себя установкой экспозиции и положиться на автоматику цифровой камеры. И впрямь, зачем все это? Ведь автоматика обеспечит все удобства, и, применяя автоматический режим съемки, вы с минимальными трудозатратами получите прекрасные фотографии.
Но чтобы воспользоваться всеми возможностями, которые предоставляет владельцу современная цифровая камера, идеального владения искусством нажимать одну кнопку недостаточно. Полуавтоматические и ручной режимы, предусмотренные во многих массовых моделях камер, одарят вас такими богатствами, о которых нужно получить хотя бы самое общее представление! А значит, необходимо идти дальше.
Этим мы и займемся – ознакомимся с традиционным способом установки экспозиции. Фотограф выбирает выдержку, а затем поворачивает диафрагменное кольцо на объективе до тех пор, пока устройство не покажет, что экспозиция установлена правильно. Но мы уже знаем, что можно сделать и наоборот: выбрать диафрагму и поворачивать головку установки выдержки до установления нужной экспозиции. Современные фотокамеры, в том числе цифровые, позволяют фотографу выбрать одно из значений экспозиции – диафрагму или выдержку, – а подбор второго значения возлагается на автоматику.
• Если фотоаппарат позволяет устанавливать значение диафрагмы вручную, а экспопару, то есть выдержку, подбирает сам, то эта схема называется режимом приоритета диафрагмы (Aperture Priority). В технических характеристиках камер такое свойство обозначается буквой А или буквами АР. Если вы хотите получить снимок с максимальной глубиной резкости, следует предпочесть этот режим.
• Фотограф может самостоятельно выставить выдержку, а значение диафрагмы назначает автоматика камеры. Такая схема называется приоритетом выдержки (Shutter Priority). Приоритет выдержки обозначается S или SP. Этот режим очень полезен при съемке движущихся объектов и при необходимости контролировать степень размытия изображения съемкой на «длинных» выдержках.
• Полное ручное управление (Manual) параметрами экспозиции присутствует и в относительно дорогих профессиональных или полупрофессиональных фотоаппаратах, и в тех, которые относятся к камерам потребительского класса. В этом режиме экспозиционная автоматика камеры полностью отключена. Отключена и система автофокуса.
А теперь посмотрите, есть ли на вашей камере переключатели этих творческих режимов. Возможно, данные режимы вызываются из меню?
4.6. Экспокоррекция
Иногда фотограф должен «подсказать» камере лучший путь выбора параметров съемки. Ведь в жизни могут возникнуть нестандартные ситуации, вроде перечисленных ниже.
• Объект съемки очень сильно освещен или затемнен, то есть он значительно отличается от среднего серого света, что может сбить с толку экспонометр.
• В кадре одновременно оказались и слишком яркие объекты, и находящиеся в тени. Здесь придется выбрать главное и пожертвовать второстепенным: либо допустить, что все тени будут черными, либо не передавать оттенки светлого.
• Вручную параметры экспозиции изменяют и в целях достижения художественного эффекта. Например, силуэт человека на фоне окна будет выглядеть очень эффектно, если часть композиции передать черно-белыми тонами.
Во всех этих случаях фотограф должен соответствующим образом сдвинуть экспозицию в нужную сторону.
Изменение параметров экспозиции, когда фотограф берет часть управления камерой на себя, называется экспокоррекцией. Вводя поправки экспозиции, он изменяет значения диафрагмы и выдержки по сравнению с теми, которые рекомендует экспонометр. Современные компактные камеры позволяют вводить экспокоррекцию ступенями в 1, 1/2 и 1/3 EV, а некоторые профессиональные камеры делают это даже точнее. Данная функция имитирует творческие режимы приоритета диафрагмы или резкости и, комбинируя значения этих параметров, разрешает фотографу самостоятельно увеличивать или уменьшать яркость изображения.
Как поправка экспозиции влияет на экспозиционные параметры? Ответ можно найти в табл. 4.2.
На рис. 4.17, а приведен снимок старинного замка, сделанный в яркий солнечный день. Очевидно, что изображение получилось пересвеченным и слишком контрастным. Следующие снимки фотограф сделал, введя поправку экспозиции сначала -2 EV (левая часть снимка б), а затем -1 EV (правая часть снимка б). Результат очевиден: контраст освещенной и затененной областей исчез, а интересовавший фотографа объект получился на правом снимке четче и резче.
Рис. 4.17. Первая фотография, сделанная в автоматическом режиме, пересвечена и содержит много контрастов (а). На втором снимке слева – тот же вид, сфотографированный с поправкой экспозиции -2 EV, справа – с поправкой экспозиции -1 EV (б)
Различают положительную и отрицательную экспокоррекцию.
• Если фотограф увеличивает выдержку или уменьшает диафрагму, то это положительная экспокоррекция. К ней прибегают, если в кадре преобладают белые и пастельные тона, а также если съемка ведется против света или на фоне зари.
• Если фотограф увеличивает диафрагму или уменьшает выдержку, то говорят, что введена отрицательная экспокоррекция. Ее вводят, если съемка ведется на очень темном фоне, а также если в кадре преобладают тени или темно-зеленые тона.
В каких случаях не обойтись без коррекции экспозиции? Есть три случая, когда алгоритм экспозамера просто не работает и фотограф, оценив кадр, должен ввести поправку экспозиции.
• Бóльшую часть кадра занимают очень светлые или очень темные объекты (например, зимой зачастую снег, снятый без поправки экспокоррекции, получается не белым, а серым). В этом случае при съемке светлых объектов экспозицию увеличивают (вводят положительную поправку), а если в кадре доминируют темные объекты, то экспозицию уменьшают (вводят поправку со знаком «минус»).
• Объекты в кадре имеют большой разброс по яркости (в кадре есть источники света или глубокие, почти черные тени).
• Если в художественных целях нужно передать часть композиции в виде белых или черных тонов (например, черную фигуру на белом фоне).
Как вводят поправку экспозиции? В камерах, где предусмотрена экспокоррекция, ее можно вводить следующим образом.
• С помощью выводимого на дисплей меню.
• Изменением значения ISO (светочувствительности матрицы) в нужную сторону. При этом положительная экспокоррекция достигается увеличением чувствительности матрицы, а отрицательная – уменьшением.
• Изменением выдержки и диафрагмы вручную.
4.7. Вилка экспозамера
Правильную экспозицию, как нам уже известно, определяют параметры выдержки и диафрагмы. Но порой у фотографа возникают сомнения: не слишком ли ярким или, наоборот, темным получится снимок? Особенно много сомнений появляется при съемке объектов с сильными перепадами контрастов и яркостей.
Случаи, когда можно прийти к однозначному решению, крайне редки. Чтобы не потерять ценный кадр, фотографы предпочитают снять два, три, а то и больше дублей с разными параметрами экспозиции. Передержанные и недодержанные снимки делают с шагом в одну, пол– или треть ступени экспозиции, как бы «беря в вилку» основной экспозиционный параметр. Этот метод так и называется – вилка. В характеристиках фотокамер такой режим обозначается буквами АЕВ.
В использовании режима автовилки вам поможет современная автоматика цифровой камеры. Чтобы использовать автоматический режим вилки (брекетинг), фотограф в меню (рис. 4.18) выбирает шаг экспозиции и делает серию последовательных снимков. Обычно такая серия состоит из трех снимков, но их может быть пять и даже семь. Так повышается вероятность получения хорошего снимка даже в тех ситуациях, когда нет времени возиться с подбором и установкой параметров.
Рис. 4.18. Выбор шага автовилки в меню Bracketing (Брекетинг)
Как получить снимки в режиме автовилки?
1. Войдите в соответствующее меню вашей камеры и выберите режим протяжки, который называется АЕВ или Bracketing.
2. Установите шаг экспокоррекции: начать можно с ±0,3 EV (см. рис. 4.18). Большинство камер, в которых предусмотрен режим автовилки, позволяет увеличивать или уменьшать шаг поправки.
3. Зафиксируйте фокус на выбранном вами объекте и скомпонуйте кадр.
4. Сделайте последовательно три или пять снимков. Для этого нужно нажать кнопку затвора и удерживать ее, пока камера не сделает всю серию снимков.
В режиме брекетинга снимки делаются в такой последовательности: нормальная экспозиция, недостаточная экспозиция, избыточная экспозиция. Чем больше кадров в серии, тем большее количество установок экспозиции будет использовано.
На рис. 4.19 представлена серия фотографий игрушки на окне, сделанных в режиме брекетинга с поправкой экспозиции от -0,7 до +0,7 EV.
Рис. 4.19. Серия снимков, сделанных в режиме брекетинга с различными поправками экспозиции
4.8. Этап 3: нажатие кнопки затвора и одновременное срабатывание системы автоматической фокусировки
Режимы протяжки
Цифровым камерам (правда, не всем) доступно несколько режимов съемки, аналогичных тем, которые в традиционной фотографии называются режимами протяжки фотопленки. Правда, пленки в вашей цифровой камере нет, и в дальнейшем режимом протяжки мы будем называть ее способность делать один, несколько или целую серию снимков.
• Single (Однокадровая протяжка). Здесь пояснения не требуются. Нажимаете кнопку затвора – получаете картинку.
• Continuous (Непрерывная протяжка). С помощью этого режима можно снять несколько кадров подряд. Вариацией данного режима серийной съемки является Progressive (Прогрессивный), который обеспечивает высокоскоростную съемку. В характеристиках камеры обычно указывается, сколько кадров в секунду можно снять в этом режиме и сколько последних кадров будет записано. В прогрессивном режиме вы сможете во время съемки видеть на дисплее «живое» изображение.
• Self-Timer (Автоспуск). Позволяет задержать время спуска затвора. Установили камеру на штатив, задали в настройках автоспуск, выбрали кадр, сфокусировались, нажали кнопку затвора до конца – а теперь бегом под «глаз» объектива, чтобы получить собственный портрет.
• Bracketing (Брекетинг). Используется для съемки серии кадров с разными параметрами экспозиции.
Нажимать кнопки вы уже умеете, правда? А вот о системах фокусировки придется поговорить подробнее.
Фокусировка
Одно из двух: объектив либо фокусируется автоматически, либо на фокус наводит сам фотограф. В любом случае в процессе фокусировки линзы объектива приходят в движение и занимают такое положение, при котором лучи света, проходящие через объектив, сфокусируются на плоскости матрицы.
Самые дешевые камеры снабжены простым объективом, который установлен на «бесконечность» и не умеет фокусироваться, так как в нем нет движущихся элементов. Объективы таких фотоаппаратов имеют маркировку FF (одни расшифровывают эти буквы как Focus Free, другие – как Fix Focus).
С помощью камеры без автофокуса можно делать неплохие фотографии. Но следует иметь в виду, что при съемке такими объективами более или менее четкими на снимках получаются лишь те объекты, которые находятся на расстоянии от 3 до 15 м.
Все современные цифровые фотоаппараты имеют систему автоматической фокусировки. В характеристиках камеры эта система обозначается маркировкой AF (AutoFocus). Объективы, оборудованные автофокусом, гораздо лучше объективов с фиксированным фокусом, так как самостоятельно определяют расстояние от камеры до объекта съемки и фокусируются на нем. Фотографии при этом получаются намного резче и лучше, ведь автоматическая фокусировка позволяет исключить грубые ошибки при наводке на резкость, а фотоэлементы большой чувствительности дают возможность камере фокусироваться даже в условиях очень слабой освещенности.
Как система автоматической фокусировки наводит камеру на резкость? Это делается посредством измерения расстояния до объекта съемки.
Секрет
Объектив камеры фокусируется на той части изображения в окне видоискателя, на которой находится зона фокусировки в момент, когда фотограф нажимает кнопку спуска.
Режимы фокусировки
Для упрощения работы фотографа расстояния, измеряемые системами автоматической фокусировки, объединены в ступени, или шаги (Stops). К примеру, в недорогих камерах с несложным объективом имеется, как правило, трехступенчатый автофокус, три настройки которого позволяют снимать на расстояниях 0,6–1 м (широкоугольное положение объектива), 1–3 м и от 3 м до «бесконечности» (режим телефото). Первая ступень позволяет снимать крупные планы, вторая – портреты, а третья – все остальное, вплоть до ландшафтов. Начинающему фотографу этого вполне достаточно.
Два из этих режимов – «бесконечность» и макросъемку – имеет смысл рассмотреть подробнее.
• При установке режима фокусировки на «бесконечность» система автоматической фокусировки отключается, а камера фокусируется на максимально большое расстояние. Этот режим используется при фотографировании пейзажей или для съемки через стекло. Вспышку при этом нужно отключать (в случае если это не делается автоматически), так как ее света для освещения удаленного объекта в любом случае не хватит, а при съемке через стекло она может дать отблеск. Режим фокусировки на «бесконечность» обозначается на управляющих органах фотоаппарата стилизованным изображением гор или значком бесконечности (да).
• Режим макросъемки позволяет фотографу снимать крупные планы близко расположенных предметов (от 40–60 см до «супермакро» – 2–5 см). Фотографии при этом получаются достаточно резкими и выглядят очень необычно: знакомые вещи, снятые крупным планом, приобретают на снимке совершенно новый вид. На управляющих органах фотоаппарата этот режим обозначают стилизованным изображением цветка или словом Macro.
В режиме макросъемки камере требуется немало времени, чтобы сфокусироваться, так как фокусное расстояние будет изменяться до тех пор, пока изображение не получится достаточно четким. Но если камера поддерживает режим Macro, то времени на фокусировку уйдет сравнительно немного.
В режиме ручной фокусировки (Manual Focus) фотограф наводит камеру на резкость самостоятельно, без помощи автоматики. При этом в видоискателе или на мониторе появляется линейка, на которой фотограф с помощью джойстика или контроллера указывает примерное расстояние до объекта.
Блокировка автофокуса
Если в поле зрения камеры находится несколько объектов, то как ей распознать, какой из них интересует фотографа? Чтобы подсказать камере, на чем она должна сфокусироваться, существует функция так называемого запирания (блокировки) автофокуса (Autofocus Lock, AF-L). Блокируя фокус, фотограф принудительно фокусирует камеру на нужном объекте таким образом, что фокус сохранится до тех пор, пока не будет сделан снимок. После того как фокус заблокирован, можно изменить компоновку кадра.
Вот несколько типичных ситуаций, требующих применения блокировки автофокуса:
• очень темный объект съемки;
• объект расположен в тени, а фотограф – на ярком солнце;
• при съемке низкоконтрастной сцены (например, человека в одежде того же цвета, что и фон);
• если в кадре множество повторяющихся структур: опоры ограды, многократные отражения и т. д.;
• в кадре имеется один или несколько источников света.
Во всех этих случаях вы должны подсказать камере, на чем ей фокусироваться. Чтобы это сделать, наведите видоискатель на другой объект, который находится на том же расстоянии и освещен точно так же, как ваш объект. А затем…
1. Нужный объект фотограф сначала располагает в центре кадра так, чтобы маркеры видоискателя указывали прямо на него.
2. Совместив центр кадра с объектом съемки, фотограф слегка нажимает кнопку спуска (примерно до половины рабочего хода). Камера при этом запоминает измеренное расстояние до срабатывания затвора.
3. Теперь нужно выждать, чтобы светодиод, указывающий на правильность установки фокуса, перестал мигать. Это означает, что камера сфокусировалась на объекте и фокус заперт.
4. Теперь, удерживая кнопку затвора нажатой наполовину, фотограф компонует кадр по собственному вкусу.
5. Фотограф нажимает кнопку затвора до конца – и автофокус срабатывает.
Насколько точно срабатывает функция блокировки автофокуса, вы можете судить по фотографиям на рис. 4.20. Первый снимок фотограф сделал, указав с помощью автофокуса камере, что главным объектом съемки является дальняя фигурка, а вторая фотография получена с автофокусом, заблокированным на ближней статуэтке.
Рис. 4.20. Снимая первый кадр (а), фотограф заблокировал фокус на дальней фигурке, указав таким образом камере, что является главным объектом съемки. Второй снимок (б) получен с автофокусом, заблокированным на ближней фигурке
Если камере не удается сфокусироваться и, несмотря на все усилия фотографа, светодиод мерцает, никак не желая загораться ровным светом, то дело, скорее всего, в том, что объект съемки находится слишком близко. Отпустите кнопку затвора, отступите на несколько шагов и проделайте все сначала.
Внимание!
Режим блокировки автофокуса применяется для съемки неподвижных объектов. Если использовать этот режим при съемке движущихся объектов, то снимок получится размытым.
Ошибки автофокуса и как их избежать
Камера с единственным датчиком в режиме точечного замера может растеряться. К примеру, если в кадре беседуют два или три человека, датчик может сфокусироваться на промежутке между ними. При этом люди на снимке «расплывутся», а фон, наоборот, получится резким. Или, к примеру, на фотографии сидящего за столом человека стол выйдет резким, а человек окажется не в фокусе. В этом случае следует навести камеру на одного человека, воспользоваться функцией блокировки фокуса (и дать камере запомнить расстояние до объекта съемки), а затем выстроить кадр.
Случается, что камера долгое время не может сфокусироваться, так как в кадре мало контрастов. Так бывает, если, например, объект и фон мало различаются по цвету и освещенности. В этом случае поступайте так же, как описано выше: наведите фотоаппарат на другой объект на том же расстоянии, заблокируйте автофокус, переведите камеру на нужный объект и снимайте.
Не стоит наводить камеру на яркие блики – очень яркие объекты могут пересилить инфракрасный сигнал, что приведет к ошибке автофокуса.
Не стоит наводиться и по очень темным, тусклым предметам и поверхностям, так как они, подобно «черным дырам», могут попросту поглотить инфракрасный луч.
При слабом освещении датчику расстояния требуется больше времени для наведения на объект. Особенно много времени для автоматической наводки на резкость затрачивает малосветосильный объектив. Дайте вашей камере больше времени, чтобы сообразить, на чем ей фокусироваться.
Инфракрасный луч отражается от стеклянной поверхности. Поэтому компактные камеры часто допускают ошибки при съемке через стекло (из окна автомобиля или поезда). В этом случае будет полезно вообще отключить систему автофокуса и наводить на резкость вручную. Если такой возможности нет, то следует наводить камеру на «бесконечность». Иначе система сфокусируется не на виде за окном, а на стекле.
Система автоматической фокусировки может «сбиться с толку», если навести видоискатель на повторяющиеся структуры: решетку ограды, переплеты окна и т. д.