[59].
Разрешение этой проблемы одновременно должно было дать ключ и к наивыгоднейшему устройству аэропланов. Но точных, бесспорных данных опыта по этому вопросу в литературе не было. Выход поэтому оставался один — и в этой области итти своим собственным путем.
Циолковский не был первым в России, кто практически работал над изучением законов сопротивления воздуха. Еще за пятьдесят с лишним лет до него военный моряк Р. Черносвитов, задавшийся целью создать проект управляемого аэростата, самостоятельно произвел в течение нескольких лет ряд опытов в этом направлении. Он производил их по методу, давно применяемому при испытании моделей морских судов, которые протаскивали с разными скоростями в бассейне с водой. Черносвитов заставлял двигаться в воздухе тела различной формы, измеряя величину сопротивления воздуха.
Из этих опытов Черносвитов сделал, между прочим, тот вывод, что «самое меньшее сопротивление претерпевает цилиндр, имеющий на обоих концах конические продолжения, ограниченные дугами круга, касательными к бокам цилиндра, коего диаметр служит основанием этому кругу, и притом сопротивление это тем меньше, чем больше высота конуса» г. Опыты повторялись им несколько раз.
Для определения силы тяги винтового пропеллера в воздухе он устроил вентилятор из железа диаметром в 1,5 метра; опыты, а также расчеты убедили его, что применение пропеллера для продвижения в воздухе корпуса дирижабля соответствующей формы — вещь вполне возможная. Все это дало ему основание выступить с проектом управляемого аэростата, который он и описал в кратких чертах в статье «О воздушных локомотивах».
В начале 70-х годов русский ученый М. А. Рыкачев, впоследствии академик и директор Главной метеорологической обсерватории, также производил опыты над воздушным пропеллером, определяя его подъемную силу.
Несколько позднее вопросами сопротивления среды вплотную занялся Д. И. Менделеев, выпустивший в свет замечательную работу «О сопротивлении жидкостей и воздухоплавании», о которой уже говорилось. В процессе ее подготовки Менделеев поставил ряд опытов. Излагая их в своей книге, он дал блестящую критику работы своих предшественников — Скотта, Росселя, Фроуда, Колардо, Дюшмена, Ранкина и других. Сопоставляя иногда противоречивые результаты их трудов, он доказал, что точной теории сопротивления не существует, а есть лишь ряд теорий и гипотез.
Кроме того, в конце 80-х годов опытами по изучению сопротивления воздуха занимался также в связи с попыткой сооружения геликоптера один из самых выдающихся русских ученых-металлургов, профессор Д. К. Чернов[60].
Вот за разрешение этой трудной задачи и взялся Константин Эдуардович Циолковский.
Первое время опыты над сопротивлением воздуха производились Циолковским совсем примитивно, но и они уже показали правильность его утверждений, что при полете дирижаблей сопротивление воздуха вовсе не представляет такой громадной величины, как ошибочно предполагали М. М. Поморцев и руководители VII Отдела.
«Мои опыты показали, — пишет Циолковский, — что оно [сопротивление воздуха] далеко не так значительно, и коэфициент сопротивления уменьшается с увеличением скорости движения аэростата...
Опыты производились отчасти в комнате, отчасти на крыше, в сильный ветер. Помню, как я был радостно взволнован, когда коэфициент сопротивления, при сильном ветре, оказался мал: я чуть кубарем не скатился с крыши и земли под собой не чувствовал»[61].
Факсимиле фрагментов письма К. Э. Циолковского в президиум Русского физико-химического общества (1897).
Факсимиле фрагментов письма К. Э Циолковского в президиум Русского физико-химического общества (1897).
Таким образом, для первых опытов Циолковский, подобно Лилиенталю, Ланглею и некоторым другим зарубежным экспериментаторам, использовал струю ветра. Вот как описывает сам Константин Эдуардович некоторые из этих своих экспериментов:
«Для непосредственного определения коэфициента сопротивления продолговатых тел, при больших скоростях движения, я устроил прибор (фиг. 9), состоящий из двух горизонтальных труб, укрепленных на треножнике; они имели в длину около 75 сант. и в отверстии около 25 сант. В одной из них помещалась на стержне (фиг. 8 и 9) испытываемая форма, а в другой пластинка; стержень, конечно, проходил в трубы через особые отверстия, и средняя часть его, как всегда, вращалась свободно на острие. Трубы выносились на крышу и ставились по направлению ветра. Я становился сбоку и смотрел на промежуток между двумя трубами на стержень, чтобы заметить, на какую его половину давление воздуха было больше, т. е. какая его половина перетягивала...Мною испытывалась форма в 62 сант. длины. Скорость ветра в месте наблюдения постоянно и быстро изменялась, переходя от 0 до 5 метров в секунду. Я употреблял последовательно, в роли пластинок равного сопротивления, медные монеты с площадями в 11,6, 8 и в 6,2 кв. сант. Когда скорость ветра мала, перетягивает форма, но лишь скорость ветра достигает 2—3 метров — и перевес на стороне пластинки (площ.— 11,6; соответствующий коэфициент — 1/7). При скорости около 4 метров перетягивает площадь в 8 кв. сант.; соответствующий коэфиц. — 1/10. При скорости, большей 5 метров, перетягивает даже монета с площадью в 6,2 кв. сант.; соответствующий коэфициент будет 1/13.
Я делал еще многие опыты с поверхностями других форм. Так, для шара и цилиндра, при скорости около одного метра, я получил коэфициенты 4,9 и 0,6. Для больших скоростей коэфициент сопротивления шара близок к 0,4».
Разумеется, сделать в таких условиях какие-либо точные выводы не представлялось возможным. Но уже одно то обстоятельство, что даже в первом грубом приближении получались данные, совпадавшие с его предположениями, окрылило Циолковского и заставило его мысль интенсивно работать над тем, как можно было бы с наименьшей затратой средств добиться точных данных, согласующихся с современной ему наукой.
Но скоро он подошел в своих размышлениях к единственно правильному решению вопроса — к созданию искусственного воздушного потока, скорость которого можно было бы регулировать. Вводя в этот поток тела различной формы, точным замером возникающего сопротивления этих тел потоку воздушной струи можно определять необходимые коэфициенты.
Факсимиле собственноручной схемы первой (1897) и второй (1900— 1901) аэродинамической трубы Циолковского.
До Циолковского к такому же решению пришел Хайрам Максим в Англии, построивший за три-четыре года до этого первую аэродинамическую трубу[62].
Однако для крупного капиталиста Максима не представляло особых трудностей найти и соответствующее здание, и необходимое оборудование, и обслуживающий персонал. Циолковскому же, располагавшему самыми скудными средствами и обремененному большой семьей, пришлось проявить огромнейшую изобретательность и неистощимую энергию, чтобы своими средствами проделать такую работу. О том, каким лишениям подвергалась в это время его семья, знали только его домашние. Достаточно сказать, что все они вынуждены были ютиться в одной из двух занимаемых ими комнатушек, ибо аэродинамическая труба, или «воздуходувка» (как ее называл Циолковский), с деталями и моделями занимала целую комнату.
Аэродинамическая труба, которую Циолковский, преодолев все трудности и лишения, все же построил впервые в России, в наши дни считается необходимым прибором при проектировании и строительстве воздушных судов. Она сыграла также огромную роль в развитии аэродинамики.
Сейчас имеются самые различные типы аэродинамических труб в соответствии с многообразием важнейших задач, которые ставятся ныне перед воздушными судами. Есть гигантские трубы, в рабочей части которых помещается уже не крошечная модель, а целый самолет в натуральную величину. Есть вертикальные трубы в виде высоких башен или шахт, в которых изучаются сложнейшие явления «штопора» и других важных моментов полета самолета. Есть и специальные трубы, в которых, например, изучаются явления, возникающие при сверхскоростных полетах, в которых достигаются скорости, превышающие скорость звука (1 330 метров в секунду) и т. д.
Циолковский с его блестящим даром научного предвидения отчетливо понимал, какие важные практические результаты принесет для человечества перевод этого дела на научные рельсы. Поэтому, желая посоветоваться с виднейшими учеными о наилучшей программе опытов и одновременно зафиксировать свое авторство, Циолковский обратился к президиуму Русского физико-химического общества, которое, как мы помним, благожелательно отнеслось к нему с самого начала его научной деятельности в 80-х годах.
Сохранились лишь отдельные места переписки по этому интересному вопросу. Из переписки видно, что общество откликнулось на письма изобретателя и создало специальную комиссию для рассмотрения проекта программы предложенных Циолковским работ по сопротивлению среды.
Имеется подлинное письмо Циолковского профессору А. Л. Гершуну, одному из виднейших деятелей общества в тот период.
Вот начало первой страницы этого письма от 5 октября 1897 года:
«1897 г. 5 октября. Калуга.
В С.-Петербург —
Университет,
Его Высокородию А. Л. Гершуну от К. Э. Циолковского
Из Калуги (Георгиевская, дом Сперанской).
Для передачи в Комиссию, рассматривающую проект моих опытов по сопротивлению.
Прежде всего прошу гг. многоуважаемых членов комиссии, дав свое мнение Обществу, не сообщать ничего и никому о моих работах и планах до окончания их и напечатания. (подчеркнуто автором. — Б. В.).
Все предлагаемые чертежи схематические и сделаны от руки, потому что не предназначены пока для печати».
Далее в тексте письма следует собственноручный эскиз как самой «воздуходувки», так и всего расположения приборов при опытах по сопротивлению воздуха. Факсимиле этого эскиза, ввиду его принципиальной важности, мы приводим.