Цивилизация N° 1. Мир был не таким, как вы думаете — страница 40 из 42



Фестский диск, сторона А

Диск изготовлен из обожженной глины. Перед обжигом на обе его стороны нанесли спиральные линии, внутри которых печатями или клише по сырой глине нанесены иероглифы. Обе стороны Фестского диска изображены на рисунке.

Лингвисты и другие проявляющие к этому вопросу интерес специалисты годами пытались расшифровать, что написано на Фестском диске, но самые смелые попытки, по общему мнению, результата не дали. Мы не знаем, на каком языке говорили на минойском Крите, а без знакомства с языком или находки своего рода минойского «Розеттского камня» расшифровка знаков на диске представляется невозможной.

Алана интересовало не столько, о чем говорят минойские иероглифы, сколько их число на каждой стороне диска и как эти числа соотносятся друг с другом. Прежде всего он обратил внимание на то. что иероглифы были написаны внутри спиралей. Многие исследователи говорят о том. что известны случаи, когда спирали рисовались для того, чтобы обозначить прохождение Солнца по годовому циклу, что, по мнению многих, было обозначено на вырезанных на камне спиралях в Ньюгрендже в Бойн-Вэли, Ирландия. В первую очередь



Фестский диск, сторона Б

Алану пришло в голову, что Фестский диск был своего рода календарем.

Ушло несколько лет исследовательской работы и понадобилось написать целую книгу, чтобы объяснить открытие, которое сделал Алан, отчасти в связи с тем, что Фестский диск представляет собой многофункциональный калькулятор, но одну функцию он выполняет блестяще. На стороне А диска имеется 123 иероглифа, на стороне Б — 119- Если их рассматривать просто как маркеры, не думая о том, что они могли бы значить, тогда диск можно считать «вторым календарем», изготовленным специально для того, чтобы сопровождать 366-дневный календарь и обозначать время, когда необходимо производить компенсацию, чтобы свести 366-дневный и истинный год.

Процедура использования описанного выше диска очень простая. Каждый символ на стороне А отсчитывается, вероятнее всего, от центра, в качестве одного дня, и так до конца спирали. Все эти символы, общим числом 123, относятся к центральному символу в центре стороны Б диска. Теперь все символы на стороне А пересчитываются снова, на этот раз соотносительно со вторым символом на стороне Б. Эта процедура повторяется до тех пор, пока 123 не будет повторено соотносительно с 119 символами на стороне Б. Общее число дней, указанных диском, равно 14 637. Это чрезвычайно близко к 40 годам по 366 дней, то есть 14 640 дням. Возможно, диск был вечным и просто продолжал новую серию циклов, но, словно учитывая этот важный период, создатели диска добавили три точки в конце спирали, обозначив таким образом, что до полного 40-годичного цикла с 14 640 днями не хватает трех дней. (Точки были нанесены, чтобы «продемонстрировать» 40-летнй цикл, но ими не пользовались в календарном цикле, который объясняется ниже.)

Оригинальность этой системы заключается в том, что она подсказывала пользующемуся диском, когда нужно компенсировать неточности, которые накапливались между ритуальным и реальным годами. Важнейшим был период 4 х 123 (492) дня, за который из ритуального 366-дневного календаря в буквальном смысле убирался один день. Получалось так, будто этот день никогда не существовал. Например, если пользоваться современными терминами, календарь мог перепрыгивать с 1 марта на 3 марта.

Лучшего способа компенсировать 366-дневный год, чем убирать один день каждые 492 дня, нет. Такая процедура поддерживала гармонию между гражданским и реальным календарями на протяжении 3000 лет, и не было нужды в каких-то иных изменениях. Это феноменально, и любой наблюдатель будет вынужден признать, что эта система проще и точнее системы, которая принята у нас.

Фестский диск способен на большее, чем это маленькое чудо, и, несомненно, помимо известных нам, почти наверняка обладает еще какими-то достоинствами, которые мы еще не выяснили. Все, что известно о нем, собрано в книге «Компьютер Бронзового века». Однако именно существование 123-дневного, или, что более важно в данном контексте, 492-дневного альтернативного календаря, подсказало Алану, что на Крите существовал 366-дневный год, что он и подозревал.

По этому методу компенсации невозможно расхождение между календарным годом и реальным годом больше, чем на 0,75 дня, и даже эта неточность может существовать максимум 126 дней. Более значительные расхождения, которые допускает наш календарь, в этой системе не существовали.

Другая особенность Фестского диска заключается в том, что он дает исключительно точный календарь поведения и движения Меркурия и Венеры. Если заменить иероглифы современными цифрами, то получится готовая таблица данных об этих планетах. Это было настолько очевидно, что Алан вскоре должен был признать, что он просто не замечал до сих пор самой элементарной вещи, а именно то. что там имелись простейшие расчеты, особенно для планеты Венера. При использовании 366-дневного года правило состоит в следующем: любое явление, связанное с Венерой, которое имеет место сегодня, повторится снова через 40 лет минус 40 дней. Для тех, кто знаком с этим методом, было бы детской игрой каталогизировать и запомнить время, когда можно было пользоваться Венерой для получения точного мегалитического ярда. Хотя сама методика весьма несложная, однако объяснить ее не так просто, и поскольку данная книга не связана непосредственно с исследованиями Фестского диска, мы отсылаем заинтересовавшегося проблемой читателя к книге «Компьютер Бронзового века».

ПРИЛОЖЕНИЕ 6Поразительное ячменное зернышко

Современное представление о шумерских и старовавилонских системах измерений было создано экспертами, изучившими множество клинописных текстов на глиняных табличках, найденных в развалинах древних городов Месопотамии. Подобно тому как это сложилось во многих культурах-долгожителях, различные линейные меры длины, веса и объема, которыми пользовались жители «плодородного полумесяца», могли быть необычайно сложными, и для некоторых видов товаров устанавливались свои собственные, особые меры. Однако, как мы отмечали в главе 4, существовали определенные веса и меры, которыми пользовались как стандартными и которые за века не менялись. Согласно профессору Ливио К. Стеччини, эти меры существуют с шумерского периода, приблизительно с 1800 года до н. э.

Самой малой мерой длины, которая существовала в Шумере и Вавилоне, была «се», что означало «ячменное зерно». Шесть се составляли одно шу-си. а 360 составляли двойной куш. Большинство экспертов по месопотамской метрологии согласны с этими цифрами, и нам казалось обоснованным видеть в се, или ячменном зерне, самой малой единице измерения длины, веса и объема, прекрасную исходную для понимания всей системы. Мы были отчасти удивлены, когда один из экспертов в этой области следующим образом ответил по электронной почте на нашу просьбу о дополнительной информации относительно ячменного зерна как шумерской единице измерения:

«Ячменные зерна больше обозначение для удобства счета, нежели настоящие ячменные зерна».

Стандартная теория «удобства подсчета» вполне понятна, так как в британской и многих других европейских системах измерений «зерно» (грейн, гран) существовало в качестве термина меры вплоть до введения метрической системы. В Британии грейн первоначально действительно был настоящим ячменным зерном, хотя иногда пользовались и пшеничным зерном. В британской и многих европейских системах грейн (зерно) в конце концов стал стандартной единицей измерения, нередко немало отличаясь от скромного зернышка, от которого произошло название.

Другая причина, по которой многие археологи отрицают, что шумеры имели в виду настоящие ячменные зерна, связана с информацией, с которой мы столкнулись, работая с шумерским кубом (см. главу четвертую). Проблема связана с фактом, что 180 х 60 — это число ячменных зерен как в «мана» (единице веса), так и в «сила» (единице объема.) Не может быть, чтобы ячменное зерно использовали как единицу веса, потому что мана равнялась приблизительно 500 граммам, а сила — это около литра, причем она весила, как нам сказали, больше килограмма. Так или иначе, мы должны были подробнее разобраться с этим месопотамским се, или ячменным зерном. Из текстов мы знали о том, что куш (кубит) приравнивался к 180 ячменным зернам. Когда мы сами попробовали поэкспериментировать, то немедленно стало понятно, почему в прошлом эксперты отклоняли ячменное зерно как реальное составляющее системы. Если учесть, что куш равнялся приблизительно половине метра, то каждое ячменное зерно должно было иметь длину 2,77 миллиметра. Наши собственные эксперименты показали, что длина современного ячменного зерна, выложенного встык с другими, равнялась в среднем 8,46 миллиметра. Мы могли бы остановиться на этом, если бы не приняли решение снять все размеры ячменного зерна. Если бы зерна были проколоты посередине и нанизаны на очень тонкую нить, как в ожерелье, то зерна соприкасались бы боками. Мы не протыкали зерен, а выложили их в ряд (см. цветную вкладку). Когда мы это сделали, то оказалось, что они невероятно подходят под шумеро-вавилонскую модель, и действительно, в среднем на куш приходится близкое к 180 число ячменных зерен!

Приняв, что длина куша составляет 49,94 сантиметра, следовало ожидать, что длина каждого ячменного зерна будет 2,77 мм. Средняя ширина зерна из взятого нами образца современных ячменных зерен (мы брали наугад и крупные, и мелкие зерна, несколько раз повторив этот эксперимент) была равна 2,81 миллиметра, и, как правило, на куш приходилось более 177 зерен. Это невероятно близко к гипотетической шумерской модели и наводит на мысль, что, по крайней мере, в отношении физических измерений наши современные ячменные зерна не очень сильно отличались от шумерских образцов.

Здесь теория о том, что «ячменное зерно» было просто словом, использовавшимся шумерами ради «удобства подсчета», выглядела уже менее убедительной. Памятуя о том, как шумеры и вавилоняне делили горизонт (как и всякий круг) на 360 градусов, мы поняли, что если зерна расположить крэгом, то понадобится еще дополнительно как раз несколько зерен. Оказалось, что круг, составленный из 360 ячменных зерен, был и в самом деле длиной двойной куш, — таким образом, каждое зерно равнялось одному градусу крута. Это был еще один пример шумерского мышления, где круги в кругах т