Цивилизация с нуля. Что нужно знать и уметь, чтобы выжить после всемирной катастрофы — страница 18 из 53

Сейчас мы не станем углубляться в детали, но вы должны уяснить, что любое полотно или материя состоит из двух систем нитей, проложенных перпендикулярно друг другу и последовательно сплетенных поочередным подныриванием одной под другую. Первая система, называемая основой, служит главным структурным элементом ткани и потому должна быть прочнее (берите двух-четырехниточную пряжу), чем утóк, нити которого пересекают параллельные жилы основы, связывая их воедино.

Ткут полотно на ткацком станке, важнейшая функция которого — удерживать нити основы туго и ровно натянутыми, а затем поднимать и опускать группы этих нитей, чтобы между ними пропустить уток. Простейший ткацкий станок состоит всего лишь из двух реек — одна привязывается к дереву, другая закрепляется на земле — между ними натягивается основа. Станок с горизонтальной рамой заметно сложнее.

Перед работой раму обвивают плотными строго параллельными оборотами нити, натягивая основу. Важнейшая часть станка — ремизки, устройство, позволяющее разделять нити основы, опуская и поднимая отдельные ряды (к этому мы скоро вернемся). Через просветы, сделанные ремизками, пропускается уток, затем приподнимается другой набор рядов, и уток возвращается — так проход за проходом плетется структура ткани.

От того, в какой последовательности поднимаются нити основы, зависит рисунок пропускаемого сквозь них утка и, значит, вид материи. Самый обычный тип — это полотняное переплетение, когда уток проходит над первой нитью и под второй по всей основе, создавая равномерную решетку из переплетающихся ячеек: так традиционно ткут льняные ткани. Достичь этого позволяет следующая конструкция ремизки: длинная планка с чередующимися круглыми отверстиями и узкими открытыми прорезями, через которые идут нити основы. Когда эта жесткая планка поднимается или опускается, вместе с ней ходят только те нити основы, что попали в отверстия, а те, что попали в длинные прорези, остаются неподвижны, а ремизка движется, не задевая их, и пропускает уток то над, то под ниткой основы.



Более сложные виды переплетения требуют более сложных типов ремизок, чем сплошная жесткая планка. Есть, например, такая весьма гибкая система, как ряд бечевок, укрепленных на поперечине, имеющих на одной и той же высоте нескользящую петлю или планку с металлическим ушком, так что при подъеме поперечины вверх идут только те нити, которые пропущены через ушки планок. Нити основы разбиваются на группы, каждой из которых управляет своя подъемная поперечина, и чем сложнее переплетение, тем больше нужно таких отдельных поперечин, управляющих ремизками, чтобы точно выдерживать последовательность качаний для нитей основы. Например, при саржевом переплетении уток за одно так называемое перекрытие проходит над несколькими нитями основы подряд, причем перекрытия идут по рядам зигзагом, отчего на ткани получается диагональный рубчик. Относительно небольшое число сплетений, в которых пересекаются уток и основа, придает саржевым тканям эластичность и удобство в носке, а кроме того, позволяет уложить нити плотнее, поэтому материал выходит прочнее и долговечнее. Например, джинсовая ткань деним — это саржа 3/1, то есть уток проходит под тремя нитками основы и затем над одной.

Но одеваетесь ли вы в кожу или тканую материю, их еще нужно надежно закрепить на теле. Отбрасываем застежки-молнии и липучки как слишком сложные для изготовления возрождающейся цивилизацией, и легко расстегиваемых застежек у вас остается немного. Лучшее из таких низкотехнологичных решений ныне распространено повсеместно, но до него не додумалась ни одна из древних, в том числе классических, цивилизаций. Удивительно, но самая обычная пуговица стала в Европе обиходным предметом только в середине 1300-х гг. Но Востоке пуговиц вообще не знали, и японцы пришли в полный восторг, увидев их у португальских купцов в XVI в. При всей простоте этого изобретения возможности, создаваемые скромной пуговицей, меняют многое. С простым в изготовлении и быстрым в применении механизмом застегивания одежду не обязательно кроить свободной и бесформенной, чтобы ее было легко надевать и снимать через голову. Теперь ее можно надеть и уже потом застегнуть спереди — такую одежду можно шить по фигуре, удобной в носке. Это была настоящая революция в дизайне одежды.

В дальнейшем, когда постапокалиптическое человечество начнет разрастаться, возникает необходимость в автоматизации однообразных и трудозатратных операций, требующихся для выделки тканей. Производительность нужно будет повышать, а трудозатраты минимизировать. Вы обнаружите, однако, что автоматизировать отдельные процессы — чесание, прядение, ткачество — и применить механическую силу вообще будет много сложнее, чем, например, при помоле зерна или толчении пульпы для бумаги. Выделка тканей включает ряд весьма тонких операций, требующих проворных движений пальцев: скажем, прясть тонкую нить без обрывов; в других случаях, например при ткачестве, предполагается сложная последовательность действий, каждое из которых должно происходить в нужный момент. С помощью примитивных механизмов сносно воспроизвести эти процессы вряд ли получится.

Важнейшим усовершенствованием простого ткацкого станка, который я описал выше, стало изобретение челнока-самолета. Самый простой способ протянуть нити утка сквозь «зев» между поднятыми и опущенными нитями основы — передавая катушку из руки в руку с края на край рамы станка. Но эта технология долгая, к тому же она ограничивает ширину полотна: не шире размаха рук ткача. Челнок-самолет — это моток нити, спрятанный в тяжелый блок в форме кораблика, который особым тяжом перекидывается с края на край полотна по гладким направляющим, разматывая за собой уток. Это новшество не только позволяет ткачу работать с существенно большей шириной основы, оно значительно ускоряет процесс ткачества и дает возможность полностью механизировать станок, привести на него энергию водяного колеса, парового двигателя или электромотора, а тогда один ткач сможет обслуживать сразу много машин. Первые механизированные станки могли пробросить уточную нить за секунду, а современные бросают уток через основу со скоростью более 100 км/ч.

Одновременно с производством продовольствия и одежды приоритетной задачей в постапокалиптическом мире станет восстановление снабжения естественными и искусственными материалами, необходимыми для существования развитого общества. И здесь пережившим катастрофу тоже надо научиться создавать эти вещества самим, а не собирать их с трупа погибшей цивилизации. Так что поговорим о том, как с нуля построить химическую промышленность.

Глава 5Вещества

Крики птиц, гнездящихся там, и далекий скрежет океана, что грызет обломки автомобилей, кирпичи и камни, — почти как рев машин в выходной день.

Маргарет Этвуд. Орикс и Коростель[22]

Нынешнее общество относится к «химии» довольно критически. Нам постоянно говорят, что полезна та еда, которая не содержит искусственных веществ, и мне встречались рекламы бутилированной воды «без химикатов». Однако на деле самая чистая вода — химическое соединение, как и все то, из чего состоят наши организмы. Еще до того, как человечество перешло к оседлости и основало в Месопотамии первые города, выживание человека зависело от целенаправленного поиска, обработки и применения природных химических соединений. За столетия мы придумали немало способов превращения веществ: те, что легко добываются на месте, превращаем в те, что нужнее, получая сырье, из которого строится цивилизация. Эволюционный успех нашего вида объясняется не только изобретением земледелия и животноводства или применением орудий и машин, облегчающих труд, но еще и умением добывать и создавать материалы и вещества, обладающие нужными свойствами.

Разные типы химических соединений как набор плотницких инструментов: каждый приспособлен для решения особой задачи, и, превращая сырье в необходимые нам продукты, мы берем для каждой задачи свое орудие. Мы увидим, что длинные цепочки углеводородов хорошо запасают энергию и отталкивают воду, то есть без них невозможны непромокаемые ткани. Мы рассмотрим различные растворы, применяемые для экстрагирования и очистки, и узнаем, как щелочи и химически противоположные им кислоты использовались в истории человечества для решения самых важных задач. Увидим, что некоторые вещества могут «сокращать» другие, оттягивая кислород — необходимый процесс для производства чистых металлов, а другие, называемые оксидантами, показывают обратную способность, например усиливая горение. В последующих главах мы поговорим о химической природе электричества, о химии, которая удерживает свет на фотографиях.

Здесь же я остановлюсь на самых необходимых и базовых веществах и процессах, притом самой малой их выборке. Химия во всей ее полноте — необъятная сеть взаимодействий, возможных превращений и переходов между разнообразными компонентами. Чтобы вернуть былые знания, постапокалиптическому обществу придется совершить большую работу по исследованию этой области, нащупать наиболее эффективные методы, переоткрыть эталонные пропорции соединяемых реагентов, записать верные химические формулы и молекулярные модели.

Термическая энергия

С течением времени человечество все лучше овладевало огнем, все более умело управляло процессом горения и применяло его. Целый ряд основных функций цивилизации немыслим без химических и физических превращений, вызываемых высокой температурой: плавка, ковка и литье металлов, стеклоделие, рафинирование соли, производство мыла, выжигание извести, обжиг кирпича, черепицы и керамических водопроводных труб, отбеливание тканей, хлебопечение, пивоварение и винокурение, а также выполнение сложных промышленных процессов Габера и Сольве, к которым мы вернемся позже. Вспышки пламени, заточенного в цилиндрах двигателей внутреннего сгорания, движут автомашины, и, даже щелкая выключателем лампы, вы, скорее всего, используете огонь, пусть и горящий где-то далеко на электростанции, — огонь, энергия которого извлекается, преобразуется и по проводам течет в вашу лампочку. Нынешняя техническая цивилизация зависит от применения огня не меньше, чем зависели наши предки, готовившие еду на очагах в первых рукотворных жилищах.