Цивилизация с нуля. Что нужно знать и уметь, чтобы выжить после всемирной катастрофы — страница 48 из 53

Но уровень жидкости, соответствующий той или иной температуре, а значит, и значение, которое вы получаете, целиком зависит от шкалы и других особенностей конструкции прибора (в отличие от рассмотренного выше простейшего барометра): вы не сможете сопоставить свои измерения с данными других термометров. Нужна стандартная температурная шкала, которую всякий может перенять и нанести на свой термометр. А для этого надо найти способ задать фиксированные значения — события или состояния вещества, которые наблюдаются всегда при одной и той же температуре и потому могут служить точкой отсчета для термометра. Представляется естественным взять за эталонное вещество воду, потому что в быту мы сталкиваемся со всем диапазоном ее состояний — от наледи на утренних дорогах до кипящей кастрюли. При наличии верхней и нижней точек шкалы остается простая задача разбить ее на удобное ровное число делений, чтобы можно было делать информативные замеры. Шкала Цельсия основана на точках замерзания и кипения воды, в которых он, соответственно, разместил отметки в 0° и 100°[61]. Но вы не станете заливать воду в термометр, обнаружив, что ртуть расширяется более равномерно и, значит, дает более высокую точность измерения. Чтобы изобрести прибор, показывающий температуру выше точки кипения ртути, например чтобы измерять жар горна или домны, придется обратиться к другим физическим явлениям. Например, изучение электричества покажет вам, что сопротивление проводника часто возрастает при его нагревании.

Научный метод: продолжение

Вот это и есть основополагающий процесс создания надежных приборов для измерения каких угодно физических величин. Открывая новые причудливые явления природы, возрождающееся человечество будет создавать новые области научного познания. Чтобы понять новые явления и изучить возможность их практического применения, нужно сначала создать инструменты для оценки параметров этих явлений и отображения их в каком-то измеримом виде. Например, когда ученые впервые столкнулись с электричеством и пытались как-то измерить это новое явление, они могли только субъективно оценивать силу получаемого удара. Но при дальнейшем изучении обозначились некоторые повторяющиеся эффекты, которые затем использовались для измерения, — моторный эффект, например, отклоняет стрелку на шкале амперметра. Научные инструменты — не просто примочки для лабораторных опытов: это и градусник, измеряющий жар у ребенка, и счетчик, записывающий расход электричества в вашей квартире, и сейсмометр, будто страж, замечающий слабые толчки, предвестие большого землетрясения, и спектрометр, с помощью которого в больничной лаборатории анализируют вашу кровь.

Эти орудия измерения мира и стандартизированные единицы, в которых считаются их показания, — основные инструменты науки. Мир познается путем внимательнейшего наблюдения, а еще лучше — путем тщательной организации некоторых предзаданных условий для детального изучения того или иного аспекта явления. То есть путем эксперимента.

Эксперимент — это способ искусственно сузить ситуацию, попытаться устранить помехи и осложняющие факторы, чтобы яснее увидеть некоторые особенности изучаемого предмета. Суть эксперимента в том, чтобы задать Вселенной четко сформулированный вопрос и пристально наблюдать ее ответ. Экспериментирование — это ответ человека, не удовлетворенного тем, что показывает ему природа, и его способ путем разнообразных воздействий вытащить на свет тончайшие детали устройства мира. Если вам удалось отодвинуть в сторону все помехи и рассмотреть со всех сторон какой-то аспект явления, можете перейти к следующему, и т. д., систематически проверяя систему, пока не поймете, как сцепляются все ее части.

Кроме инструментов, расширяющих человеческое восприятие и замеряющих различные параметры — термометра, микроскопа, магнитометра и пр., — строгий и детальный сценарий какого-то из экспериментов может потребовать особых приборов: оборудования, сконструированного специально для создания определенных явлений, подлежащих изучению. Важно при этом, чтобы ваши наблюдения и результаты опытов записывались в численном выражении — чтобы качественное описание опыта было дополнено точной количественной оценкой. Ведь математика — это далеко не только числовая оценка и точное сравнение, ее язык служит отличным инструментом для описания структуры и поведения Вселенной и взаимоотношений ее составных элементов. Формула — это краткий смысл какого-то сложного отрезка реальности, его сущность. Она дает вам способность спрогнозировать и вычислить исход каких-то новых, ранее не наблюдавшихся ситуаций, иначе говоря, точно предсказывать события[62].

Наука — это тщательные наблюдения, хитроумные эксперименты и лаконичные формулы, но ее абсолютная квинтэссенция в том, что она предлагает механизм, позволяющий установить, какое объяснение вещей наиболее правдоподобно. Любой, кто обладает воображением, может нарисовать картину, непротиворечиво объясняющую явления природы: отчего идет дождь, что такое огонь и почему у леопарда пятнистая шкура. Но все это не более чем байки для развлечения — как «Просто сказки» Киплинга, — пока у вас нет надежного способа проверить, какая гипотеза ближе всего к действительности.

Ученые конструируют максимально вероятное объяснение, опирающееся на уже имеющееся знание и доказанные факты, называют его гипотезой и придумывают эксперименты для верификации тех или иных аспектов этой гипотезы, педантично проверяя, насколько она прочна, или выбирая одну из нескольких возможных версий. И если гипотеза раз за разом выдерживает проверку опытом, подтверждается наблюдениями и не обнаруживает изъянов, она становится признанной теорией, и мы можем уверенно опираться на нее в поиске объяснений других непонятных явлений. Но даже и тогда никакая теория не считается незыблемой: в дальнейшем ее могут пересмотреть, если, например, появятся факты, которых она не может объяснить, и предложат вместо нее другую, лучше соответствующую наблюдаемой картине. Суть науки в том, чтобы раз за разом признавать, что заблуждался, и принимать новые, глубже проработанные модели, так что, в отличие от любых вероучений, научная практика гарантирует, что наши объяснения мира с течением времени становятся все полнее и точнее.

Таким образом, наука — это не инвентаризация знаний, это способ их приобретения. Это не продукт, а процесс, бесконечный диалог, перепасовка между теорией и наблюдением, самый верный способ понять, какое объяснение истинно, а какое ложно. Именно поэтому наука оказалась столь полезной системой для познания мира — мощной машиной производства знания. Именно поэтому сам научный метод и есть величайшее из всех изобретений.

Однако в суровой реальности постапокалиптического мира приобретение знаний ради знаний не будет вашей первой заботой — вам нужно будет применять знания для улучшения условий жизни.

Наука и технологии

Практическое применение научного знания — это основа технологии. Главный принцип любой технологии опирается на какое-то явление природы. В механических часах, например, применено свойство маятника качаться в строго определенном ритме, зависящем от длины самого маятника, — эту неколебимую размеренность можно использовать для отсчета времени. Лампа накаливания использует эффект нагревания проводника, обладающего высоким электрическим сопротивлением, и способность объектов при очень высокой температуре испускать свет. В сущности, любая технология, кроме самых примитивных, использует широкий диапазон различных явлений, сочетая и координируя разные эффекты, чтобы добиться нужных целей. Новые технологии неизменно строятся на предшествующих, используют найденные прежде решения, применяя их для новых задач, как готовые блоки. Зачастую новым в изобретении бывает только сочетание этих стандартных блоков, и два таких примера мы рассмотрели подробно: печатный станок и двигатель внутреннего сгорания. Каждая новая технология несет в себе новую функцию или преимущество, которые, в свою очередь, могут быть инкорпорированы в последующие инновации, — техника порождает технику.

Как мы видели в этой книге, в истории человечества наука и техника тесно взаимодействуют. Ученые обнаруживают дотоле неизвестное явление, замечая, что новые наблюдения не объясняются ни одним из известных природных законов, а затем изучают различные его стороны и пробуют их регулировать и направлять. Использование новых закономерностей позволяет создавать новые орудия и иные приспособления, облегчающие труд человека или улучшающие его быт, — идет процесс превращения странного в полезное. Развитие технологий позволяет строить новые научные инструменты и проводить опыты, чтобы под новым углом рассматривать и по-новому измерять природу, что приносит новые фундаментальные открытия и открывает новые аспекты Вселенной. Наука и технология живут в тесном симбиозе — научные открытия двигают техническое развитие, которое, в свою очередь, способствует дальнейшей генерации знаний о мире.

Конечно, не все новации основаны непосредственно на недавних открытиях: колесная прялка, например, — это просто практическое решение технической задачи, и даже паровой двигатель, эмблема и знамя промышленной революции, родился главным образом из эмпирических ноу-хау и интуитивных решений инженеров, а не в результате теоретических построений. Мало того, в истории довольно примеров, когда изобретатели не понимали или неправильно понимали природу своего изобретения, но это не мешало ему прекрасно служить людям. Например, практика консервирования продуктов в запаянных жестянках возникла задолго до признания микробной теории, когда люди еще не понимали, что порчу продовольствия вызывают микроорганизмы.

Даже если используемые явления вполне и верно понимаются, для полезного и практически применимого изобретения нужно много больше, чем просто творческое озарение или усилие воображения. Любая успешная инновация требует долгого вызревания, доводки и отладки конструкции, прежде чем покажет себя достаточно надежной в работе и найдет широкое применение, — это те самые 99 % пота, которые, по определению Эдисона, следуют за 1 % вдохновения. Здесь применяется тот же самый процесс скрупулезного методичного исследования, что составляет основу научного познания, только в этом случае изучается не природа, а творения человеческих рук: новорожденная технология становится предметом экспериментов, цель которых — выявить ее недостатки и повысить эффективность.