Задолго до Пифагора, в Древнем Египте и Месопотамии, были известны тройки целых чисел (позднее их стали называть пифагоровыми), в которых квадрат одного числа равнялся сумме квадратов двух других.
Объяснить закономерность, описывающую эти числа, математики того времени не могли. Но можно обнаружить интересные соотношения между числами, например 52 + 122 = 132: если не знать, в чем их причина и каковы их следствия, то подобные соотношения будут всего лишь интересными фактами. Строгое доказательство теоремы Пифагора вызвало первый крупный кризис в математике.
Девизом пифагорейской школы было «все есть число». Пифагорейцы наделяли числа мистическими свойствами и считали, что любые соотношения между вещами описываются соотношениями натуральных чисел. Если применить теорему Пифагора к диагонали квадрата, получим удивительный результат:
Пифагорейцы считали, что длина D (квадратный корень из 2) должна быть соизмерима со стороной квадрата, то есть быть дробным числом. Если бы мы разделили сторону квадрата на достаточно большое число частей, например на миллион, то длина диагонали должна была равняться целому числу частей. Можно ли представить ее как 1414213? Нет, так как квадратный корень из двух нельзя представить в виде частного двух натуральных чисел, и это помешало найти меру, которой можно было бы вычислить и сторону квадрата, и его диагональ.
Теорема породила чудовище, невозможное с общепринятой точки зрения.
Оказалось, что не все соотношения можно свести к отношению двух целых. Нечто столь простое, как диагональ квадрата, оказалось несоизмеримым с его стороной.
Так появились несоизмеримые величины. В то время математики не обладали достаточными знаниями, чтобы доказать, что длина окружности также несоизмерима с ее диаметром, то есть что число π несоизмеримо с дробными числами.
Рассмотрим, почему квадратный корень из 2 нельзя представить как частное двух натуральных чисел. Всякое натуральное число n можно представить в виде произведения простых множителей. Пример:
12 = 22·3;
315 = 32·3·7.
Заметим, что при возведении числа в квадрат все простые множители в его разложении будут встречаться четное число раз:
122 = (22·3)2 = 24·32;
3152 = (З2·5 ·7)2 = З4·52·72.
Если частное двух натуральных чисел m и n равно квадратному корню из двух, то
Теперь разложение на простые множители для m2 и для m2 содержит четное число простых множителей. По этой причине, вне зависимости от того, присутствует ли 2 в разложении n2 на множители, 2 будет фигурировать в разложении 2n2 нечетное число раз. Если разложение n2 на множители не содержит 2, то разложение 2n2 будет содержать одну двойку; если же в разложении n2 содержится несколько двоек, их число будет четным, следовательно, в разложении 2n2 двойка встретится нечетное число раз. Поэтому m2 и n2 не могут быть равны, так как в разложении одного из этих чисел 2 встретится четное число раз, а в разложении другого — нечетное число раз. Следовательно, √2 не может быть частным двух натуральных чисел, и диагональ квадрата и его сторона несоизмеримы.
* * *
ТРАНСЦЕНДЕНТНЫЕ ЧИСЛА
Многочлен — это выражение, в котором присутствует переменная, возведенная в различные степени с натуральным показателем. Числа, на которые умножается переменная в этих степенях, называются коэффициентами. Например, следующий многочлен
Р(х) = х5 — 4х3 + 3х2/2 -6
имеет рациональные коэффициенты, а именно 1, -4, 3/2 и -6. Число а называется корнем многочлена, если при этом значении переменной многочлен обращается в ноль: Р(а) = 0. Число а = 2 является корнем вышеприведенного многочлена. Число называется трансцендентным, если не существует многочлена с рациональными коэффициентами, корнем которого оно бы являлось. Иными словами, нельзя записать уравнение со степенями с натуральным показателем, решением которого будет трансцендентное число. Иррациональность числа √2 была доказана еще в Древней Греции. Об иррациональности числа я математики подозревали давно, однако доказательство этому было найдено лишь в 1761 году благодаря усилиям Иоганна Ламберта. В 1882 году Линдеман доказал, что я является трансцендентным числом. Как следствие, была окончательно доказана невозможность решения задачи о квадратуре круга. Число е (е = 2,71828182845904…) названо так по первой букве фамилии одного из величайших математиков всех времен — Леонарда Эйлера (1707–1783). Так же как и π, е является иррациональным и трансцендентным.
* * *
Натуральные числа столь близки нам, что многие считали их божественным творением. Можно сказать, что нечто столь совершенное не имеет изъянов и что любая теорема о натуральных числах в итоге обязательно должна быть либо доказана, либо опровергнута. Любое утверждение в системе натуральных чисел обязательно является либо истинным, либо ложным.
Однако математик Курт Гёдель (1906–1978) доказал, что это не так, что существуют недоказуемые теоремы о натуральных числах, то есть о них нельзя сказать, истинны они или ложны. Согласно так называемой теореме Геделя о неполноте натуральные числа также содержат парадоксы.
* * *
ПАРАДОКСЫ
Парадокс — это рассуждение, приводящее к взаимно исключающим заключениям. Рекурсия в языке порой становится причиной парадоксов, в частности, как в двух первых случаях из числа представленных ниже. Третий случай является удивительным примером математической задачи с тремя разными решениями.
1. Некий брадобрей бреет только тех, кто не бреется сам. Кто должен брить самого брадобрея?
2. Слово «гетерологичный» означает «неприменимый к самому себе». Является ли само слово «гетерологичный» гетерологичным словом?
3. Парадокс Бертрана. В окружности случайным образом проводится хорда. Какова вероятность того, что ее длина будет превышать длину стороны равностороннего треугольника, вписанного в эту же окружность? Эту вероятность можно рассчитать тремя разными способами и получить три разных результата: 1/2, 1/3 и 1/4.
* * *
Найти смысл и значение основных математических понятий всегда было творческой задачей. Существует множество простых уравнений, о которых говорят, что они не имеют решения, так как число, которое было бы их решением, не имеет смысла в наиболее часто используемой системе чисел.
В поле натуральных чисел, которые используются при счете, не имеет решения следующее уравнение, так как единственно возможное его решение не является натуральным числом:
2х = 1.
Однако это уравнение имеет решение в области дробных, то есть рациональных чисел:
Аналогично, очень простое уравнение
х2 = 2
не имеет решения в поле рациональных чисел. Именно с этой проблемой столкнулись древние греки. Однако им пришлось принять этот «чудовищный» результат, поскольку он являлся решением одной из простейших геометрических задач — задачи о нахождении диагонали квадрата единичной стороны.
Решение этого уравнения и этой задачи расширяет поле чисел так называемыми вещественными числами:
Можно подумать, что некоторые уравнения не имеют решений просто потому, что не существует чисел, которые описывали бы их решения, и, следовательно, решение имеет всякое уравнение. Суть проблемы в том, принадлежит решение этого уравнения к известным на данный момент числам или нет. Приведем еще один пример: мы говорим, что уравнение
х2 = —1
не имеет решения. Однако оно не имеет решения потому, что мы считаем х вещественным числом — конечной или бесконечной дробью, периодической либо нет.
Однако существует значение х, которое является решением этого уравнения, и выглядит оно «чудовищно»:
В середине XVI века Джероламо Кардано нашел формулу решения кубических уравнений, но, применив ее к уравнению х3 — 15х — 4 = 0, он столкнулся с проблемой. Нетрудно показать, что решением этого уравнения является х = 4. Однако решение, найденное по формуле Кардано, выглядело совершенно иначе:
Перед нами — еще одно «чудовище». Какой смысл имеет квадратный корень из отрицательного числа? Как соотносится подобное число с известным нам решением х = 4? Если мы примем квадратные корни из отрицательных чисел как числа, то какое значение они будут иметь?
Лишь в начале XIX века корни из отрицательных чисел получили свое значение: они стали составной частью комплексных чисел и им были поставлены в соответствие точки в декартовых координатах. Множество комплексных чисел, обозначаемое символом С, расширяет поле вещественных чисел. Комплексное число — это число, состоящее из двух частей: вещественной и мнимой. Мнимая часть представляет собой произведение вещественного числа на i — корень из минус единицы, также называемый мнимой единицей. Рассмотрим два комплексных числа, а и Ь:
i = √-1
a = 2 + 3i
b = 1/2 — i√5.
Чтобы представить число а = 2 + 3i в декартовой системе координат, нужно отложить две единицы вдоль оси абсцисс и три единицы — вдоль оси ординат. Полученная точка будет иметь координаты (2, 3). Однако мы изобразили не просто точку на координатной плоскости — в отличие от точек и векторов на плоскости, с комплексными числами можно выполнять все известные алгебраические операции: сложение, вычитание, умножение, возведение в степень и т. д., и эти вычисления аналогичны вычислениям с вещественными числами. Наконец, система комплексных чисел является полной, так как любое уравнение на поле комплексных чисел имеет решение на этом же поле, что не выполняется для других множеств.