Р, Q, R, S и соединим их отрезками, образуя четырехугольник. Обозначим середины его сторон точками А, В, С, D. Соединим эти точки так, чтобы получился второй четырехугольник внутри первого. Замечаете ли вы нечто особенное?
Повторите построение для других исходных точек, и вы увидите то же самое.
Перед нами — необычная ситуация. Кажется, что геометрия не подчиняется здравому смыслу. Какую бы форму ни имел исходный четырехугольник, для него всегда будет выполняться утверждение:
четырехугольник, вершины которого совпадают с серединами сторон произвольного четырехугольника, является параллелограммом.
Мы обнаружили порядок среди хаоса. Первое, что нужно сделать в подобных ситуациях — постараться объяснить увиденное. Быть может, доказательство поможет нам найти такое объяснение, а может быть, и нет. Рассмотрим векторный и алгебраический подход к этой теореме. Нужно доказать, что точки А, В, С и D, которые являются серединами сторон произвольного четырехугольника PQRS, определяют параллелограмм. Иными словами, нужно доказать, что векторы АВ→ и DC→ равны, то есть их можно разложить на одинаковые составляющие. Пусть исходные точки имеют следующие координаты: P(p1, р2), Q(q1, q2), R(r1, r2) и S(s1, s2). Найдем координаты первого из рассматриваемых векторов и покажем, что они равны координатам второго вектора:
Теорема доказана. Объясняет ли это доказательство суть увиденного нами? Нет. Перед нами пример того, как логика доказывает, но не объясняет. В данном случае логика не объясняет, потому что из доказательства мы не можем понять, почему ситуация складывается именно так, а не иначе. Вернемся в начало доказательства и обратим внимание на часть исходной фигуры:
Возможно, в этом контексте она покажется вам знакомой. Проведем вспомогательную линию — единственно возможную для завершения рисунка:
Результат построения — треугольники APD и QPS. Так как точки А и D — середины сторон PQ и PS соответственно, то отрезок AD параллелен QS, а его длина в два раза меньше длины QS. Последнее утверждение известно как теорема о средней линии — она заслуживает отдельного упоминания, так как не столь очевидна, как может показаться.
Проведя аналогичные рассуждения для вершины R исходной фигуры, получим, что отрезок ВС параллелен QS. Так как AD и ВС параллельны QS, они параллельны между собой, а четырехугольников CD — параллелограмм.
Несомненно, только в геометрическом контексте теорема наполняется смыслом, а объяснить ситуацию помогает доказательство, в котором используется теорема Фалеса.
Однако, подобно творцам от математики, не следует останавливаться на этом.
Пауль Матуссек, которого мы цитировали в первой главе, говорил, что творческий ум работает постоянно. Так, прямым следствием этой теоремы является то, что стороны параллелограмма ABCD параллельны диагоналям четырехугольника PQRS. Можно задать и другие вопросы: что произойдет, если мы будем делить стороны исходного четырехугольника не пополам, а на три, четыре и более частей?
Здесь в игру вступают компьютерные программы для рисования и обработки геометрических фигур, которые позволяют наглядно представить ситуацию и могут навести на новые вопросы. Рисунки ниже были сделаны с помощью программы, позволяющей произвольно перемещать вершины исходного четырехугольника. При этом возникают весьма необычные четырехугольники и параллелограммы:
Нельзя избавиться от ощущения, что некоторые из этих фигур представляют собой изображения трехмерных многогранников на плоскости. Теорема Вариньона покидает пределы плоскости и выходит в пространство. Современные технологии помогли нам сломать незримые границы, поставленные исходной формулировкой задачи. Как следствие, возникли новые вопросы: верна ли теорема Вариньона, если стороны исходного четырехугольника пересекаются? А если одна из вершин четырехугольника совпадает с какой-либо из остальных и таким образом четырехугольник превращается в треугольник? Какими свойствами будет обладать этот треугольник и каким будет соотношение между ним и параллелограммом внутри него? При каких условиях теорема будет выполняться в пространстве, если мы заменим четырехугольник многогранником, а параллелограмм — параллелепипедом?
2000 год был объявлен Международным годом математики. В мире прошли многочисленные конгрессы, а в научных и учебных центрах состоялись различные мероприятия, посвященные математике. Эта дата навела автора на новый вопрос:
можно ли представить число 2000 в виде суммы последовательных натуральных чисел?
Так появилась теорема о числах, которая ранее не была известна автору этой книги и его коллегам. Год публикации первого издания этой книги — 2010. Это число достаточно круглое, чтобы можно было вновь задаться вопросом:
можно ли представить число 2010 в виде суммы последовательных натуральных чисел?
Оно не является суммой двух последовательных натуральных чисел:
2010 = 1005 +1005 = 1004 +1006.
Однако его можно представить как сумму трех или четырех последовательных чисел:
2010 = 669 + 670 + 671.
2010 = 501 + 502 + 503 + 504.
Можно ли представить любое натуральное число в виде суммы последовательных натуральных чисел? Очевидно, что всякое натуральное число можно представить как сумму одного последовательного числа — самого себя. Запишем сумму k последовательных натуральных чисел:
(n + 1) + (n + 2) +… + (n + k) = k·n + (1 + 2 + … + k).
Сумма чисел в скобках рассчитывается по формуле из предыдущей главы:
В нашем случае:
С одной стороны, если k — четное, то 2n + k также будет четным, а 2n + k + 1 будет нечетным. С другой стороны, если k — нечетное, то k + 1 четное, и 2n + k + 1 также будет четным.
В любом случае один из множителей в знаменателе будет нечетным.
Следовательно, сумма последовательных чисел имеет как минимум один нечетный делитель. Это означает, что в виде суммы последовательных натуральных чисел можно представить только числа, имеющие нечетный делитель. Так как у чисел, являющихся степенями 2, нет нечетных делителей, имеем следующую теорему:
только числа, которые являются степенями 2, нельзя представить как сумму последовательных натуральных чисел.
Приведя подобные слагаемые в суммах последовательных чисел, увидим, откуда появляется этот нечетный множитель:
Если число слагаемых n нечетное, этим нечетным множителем будет n, если же число слагаемых n четное, то этим нечетным множителем будет 2n + 1. В любом случае один из сомножителей будет нечетным.
* * *
КАРЛ ФРИДРИХ ГАУСС (1777–1855)
Этот немецкий математик, который родился в Брауншвейге и умер в Гёттингене, был вундеркиндом. Он получил хорошее образование благодаря не отцу, а матери. Гаусс никак не мог решить, что ему следует изучать — философию или математику. В начале весны 1796 года он сделал выбор в пользу математики, и наука весьма благодарна ему за это, так как Гаусс в итоге стал одним из величайших математиков всех времен. Несомненно, на его решение повлиял тот факт, что в тот самый весенний день ему удалось построить с помощью циркуля и линейки правильный 17-угольник. Как математик Гаусс совершил много важных открытий, но этим успехом он гордился больше всего — настолько, что попросил высечь этот многоугольник на своем надгробии, на что мастер возразил, что высечь эту фигуру будет очень сложно и ее будет почти невозможно отличить от окружности.
Портрет Гаусса.
Этот немецкий математик доказал, что правильный 17-угольник можно построить с помощью циркуля и линейки.
Глава 4Межкультурное и творческое взаимодействие
До сих пор мы говорили о наиболее типичном аспекте математической деятельности — о том, как человек, сталкивающийся с событиями и явлениями, пытается объяснить их с точки зрения математики. Мы не углублялись в культурные и социальные аспекты математики, хотя в первой главе отметили, что именно они играют основную роль в ее развитии.
Математика формируется в рамках определенного социального и культурного контекста, который в значительной степени определяет ее развитие как внутри научной среды, так и вне ее. Следовательно, социокультурные факторы влияют на математическое творчество, так как придают одним задачам большую важность, чем другим, и если в одной культуре определенные задачи считаются очень важными, то в другой культурной среде им не уделяется никакого внимания.
Этноматематика — это раздел науки, изучающий развитие математики в определенных группах культур. Благодаря этноматематике мы знаем, что в разных частях света люди по-разному производят вычисления, по-своему воспринимают геометрические фигуры и используют для решения одних и тех же задач разные алгоритмы. С одной стороны, это доказывает творческую природу каждой культуры, с другой стороны — делает возможным межкультурное взаимодействие.
Далее мы вкратце расскажем о том, как автор этой книги накапливал новые математические знания вне своей научной среды и вне родной ему западной культуры. Надеемся, что читатель снисходительно отнесется к крайне субъективному характеру повествования.
Пока что мы всегда говорили об эвристике в рамках определенной ку