Историки сходятся в том, что математика берет начало в глубокой древности, когда зарождался сам язык, когда еще не существовало ни западной культуры, ни цивилизации вообще. Если мы будем считать создание и распространение систем счисления началом математической деятельности человечества и, подобно выдающимся историкам науки, будем полагать, что системы счисления были созданы до того, как появилась письменность, то остается сделать последний вывод: математика зародилась не только за рамками нашей культуры, но и задолго до ее рождения.
Накопленные математические знания и наследие Платона заставляют думать, что математика представляет собой череду открытий, однако в этой науке не открывают — здесь создают. Процитируем испанского логика Жузепа Пла:
«…Математика, практически так же, как язык, является продуктом человеческого разума и обладает собственной жизненной силой, что заставляет думать, что она существует независимо от математических знаний и математического творчества. Позволю себе решительно заявить — эта точка зрения ошибочна».
Проиллюстрируем это представление на примере. Допустим, что животные собрались на водопой. Некий человек, посмотрев на них, опишет их множеством способов и сформулирует множество вопросов о них. Но эти описания и вопросы будут определяться его культурой. При этом математики-формалисты указывают, что на водопой собралось, например, семь животных, и их число не зависит от наблюдателя. Мы нашим примером хотим подчеркнуть, что число семь определяется нашей культурой, так как наблюдатель умеет считать, умеет различать «много» и «мало» и ему интересно, сколько же именно составляет «много», а сколько — «мало».
Однако человек, насчитавший семь животных, возможно, упустил из виду что-то, что находится у него перед глазами и доступно его чувствам, поскольку особенности его культуры не позволяют ему сформулировать вопросы об этом на своем языке.
Откуда мы знаем, что эти незаданные вопросы не относятся к сфере математики и не являются такими же важными, как вопрос о числе животных на водопое?
Поэтому разумно утверждать, вслед за Хершем и Эрнестом, что известная нам математика является продуктом человеческого общества и культуры. Следовательно, в разных культурах она будет отличаться. И это действительно так. Разве неевклидова геометрия, созданная в буржуазной Европе XVIII века, не отличается от древнегреческой геометрии Евклида, созданной 2500 лет назад?
Вся математика Евклида имеет конечный характер. В ней отсутствуют итеративные процессы и понятие предела. В этом контексте дифференциальное исчисление нельзя рассматривать как нечто относящееся к математике. Сегодня степень математической глобализации такова, что все возможные различия нивелировались.
Евклидова, проективная, сферическая, фрактальная геометрия, метод конечных элементов, рекуррентные формулы, использование простейших (линейка, циркуль) и сложных приспособлений (компьютерные программы) — все это и многое другое мы объединяем одним названием: «математика». Теперь все перечисленное выше образует единое целое, но раньше это было не так.
По легенде, когда великий математик и мудрец Архимед принимал ванну, ему пришла в голову идея (озарение?), что объем тела, погруженного в воду, равен объему вытесненной им воды, и он воскликнул «Эврика!», то есть «Нашел!». Подобное счастливое озарение было и остается примером математического творчества. Однако это кажущаяся спонтанность. Другие великие математики, например француз Анри Пуанкаре, переживали похожие моменты и рассказывали о том, как и когда на них снизошло вдохновение.
Как в мозгу человека зарождаются удивительные идеи? В результате чего они возникают? Ответы на эти вопросы нужно искать не в математике, а в психологии.
В начале прошлого века Пуанкаре предложил описание того, как работает ум математика, и представил его Парижскому психологическому обществу. Он начал свой доклад с двух парадоксальных вопросов: «Как может кто-то не понимать математики вообще или с трудом понимать ее? Возможны ли в математике ошибки?»
* * *
АРХИМЕД ИЗ СИРАКУЗ (287–212 ГОДЫ ДО Н. Э.)
Он умер от рук римского солдата, который не знал о приказе консула Марцелла сохранить ученому жизнь. По легенде, солдат не пощадил изобретателя, который был погружен в математические размышления, в то время как в его доме орудовали римские воины. К наиболее важным открытиям Архимеда относятся: правило рычага, приближенное вычисление площади круга, решение задачи о трисекции угла, вычисление площади сегмента параболы и площади сферического сегмента, а также труд о шаре и цилиндре.
Профиль Архимеда изображен на медали Филдса, которая каждые четыре года вручается одному или нескольким математикам в возрасте до сорока лет. Филдсовская премия в математике считается аналогом Нобелевской премии.
* * *
Первый вопрос возникает, когда мы утверждаем, что в основе математики лежит логика с ее основополагающими и всеобщими принципами. Второй вопрос возникает, если мы считаем, что математик — это некий мудрец, который в своей работе руководствуется законами логики, и поэтому не может совершать ошибок. При этом некоторые люди прекрасно разбираются в бытовой логике, но при этом не способны понять математическое доказательство, состоящее из кратчайших логических рассуждений. А сам Пуанкаре признавался, что не мог складывать числа без ошибок!
Он же указывал: крайне важно, что математическое доказательство является не совокупностью силлогизмов, а их последовательностью, при этом порядок их расположения намного важнее, чем они сами. Если математик четко представляет себе этот порядок, ему не нужно бояться, что он забудет о каком-то из шагов доказательства. Однако способностью видеть связи, в том числе неявные, между на первый взгляд совершенно разными вещами, по-видимому, обладают не все. Именно эта способность, по мнению Пуанкаре, отличает тех, кто может творить математику, от тех, кто может изучать, понимать и применять ее.
Математическое творчество не заключается в комбинировании уже известных знаний — на это способен и компьютер, однако многие его комбинации не будут представлять никакого интереса. Для Пуанкаре творить значило выбирать полезные и очень редкие комбинации среди многочисленных бесполезных.
Пуанкаре делил творческий процесс на этапы. Он начинал с долгой и трудной работы над темой в течение нескольких недель. Затем какое-то необычное событие (например, выпитая чашка черного кофе) мешало ему заснуть, и его начинали одолевать идеи. Именно в этот момент отдельные идеи переплетались и соединялись в единое целое. Далее полученные результаты улучшались, после чего по аналогии к нему приходила новая идея. Затем начиналась новая фаза, во время которой ученый занимался чем-то далеким от математики (например, отправлялся на экскурсию), отвлекаясь от своих размышлений. И во время какого-то вполне обычного действия (например, когда он садился в автобус) Пуанкаре понимал ключевую взаимосвязь между элементами, которые казались не зависящими друг от друга (например, между фуксовыми функциями и неевклидовой геометрией). Вернувшись домой, он проверял правильность пришедшей к нему мысли.
Внезапное озарение, посетившее Пуанкаре, было результатом длительной сознательной и подсознательной умственной деятельности. И этот подсознательный труд, который порой оказывается более продуктивным, чем сознательный, по всей видимости, начинается только после того, как проведен определенный объем сознательной работы, как если бы мы оставили компьютер в спящем режиме или свернули окно одной программы и запустили другую. Однако программа, окно которой мы свернули, продолжает работу и выдает решение, о котором мы узнаем только тогда, когда открываем ее окно снова, щелкнув на него или закрыв все остальные программы. Пуанкаре особо выделял роль осознанного труда: даже если он казался безрезультатным, без него совершить открытие невозможно.
Нам неизвестно, какие умственные процессы привели Архимеда к его открытиям, но, возможно, он чувствовал нечто подобное. Те, кто занимался математикой на профессиональном или любительском уровне, наверняка понимают, что Пуанкаре имел в виду.
* * *
АНРИ ПУАНКАРЕ (1854–1912)
Этот знаменитый французский математик, помимо прочего, известен благодаря топологической гипотезе, носящей его имя, которую, по меньшей мере в общих чертах, доказал российский математик Григорий Перельман в 2002 году. Нить на двумерной поверхности сферы можно непрерывно сворачивать, пока она не обратится в точку. Гипотеза Пуанкаре гласит, что аналогичная ситуация возможна для сферы с трехмерной поверхностью, находящейся в четырехмерном пространстве.
На иллюстрации показана петля, затягивающаяся вокруг точки на поверхности сферы.
* * *
Именно так математическое творчество традиционно рассматривается в психологии. Однако следует выделить еще несколько моментов помимо тех, на которые нам указал великий француз. Один из них состоит в том, что умелый математик способен связать воедино вещи, которые кажутся совершенно разными. Пуанкаре уделял этому огромное внимание и даже говорил, что математик — это человек, дающий разным вещам одно наименование. Это умение важно не только в математическом творчестве, но и в творчестве вообще. Еще один момент, который тесно связан с предыдущим и который выделяют как Пуанкаре, так и Курант и Роббинс (1996), Пойа (1988) и Лакатос (1994), заключается в том, что в математическом творчестве важную роль играет аналогия.
Мы говорили, что основная составляющая математического творчества — аналогия. Более того, если вы хотите создать нечто новое в математике, мыслите аналогиями и отставьте логику в сторону. А что еще оказывает влияние на творческий процесс?