СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ СНАЙПЕРСКИХ ПАТРОНОВ НОРМАЛЬНОГО И КРУПНОГО КАЛИБРА
По: Зеленко В.К., Брызжев А.В., Злобин В.В., Королев В.М. Пистолетные и снайперские патроны, 2008.
4. Способы обеспечения меткости стрельбы
На меткость стрельбы, как известно, влияют четыре основные группы причин: внешние (атмосферные условия, местность, освещенность); свойства патрона; свойства оружия и прицельных приспособлений; причины, зависящие от стрелка. Заметим, что винтовка – лишь инструмент стрелка, а результат стрельбы определяется комплексом «стрелок – прицел – оружие – патрон». Качества стрелка и определение внешних условий стрельбы – отдельный вопрос. Здесь же речь идет об оружии.
В отношении комплекса «патрон – оружие – прицел» принято выделять пять основных параметров, обеспечивающих меткость: качество изготовления ствола; прочность, симметричность и надежность узла запирания; крепление ствола со ствольной коробкой в ложе; качество и крепление прицела; точность изготовления боеприпасов. Можно добавить сюда соответствие массы и баланса винтовки энергии отдачи (с учетом автоматики, действия дульного тормоза или компенсатора, если таковые имеются), а также прикладистость винтовки. В оружии не бывает мелочей и не может быть ничего лишнего.
Схема колебаний при выстреле ствола винтовки обр. 1891/30 г.
Основную роль в обеспечении баллистических характеристик играют патрон и ствол. Длина ствола и его нарезной части, крутизна нарезов определяют начальную скорость пули, ее стабилизацию и устойчивость в полете. Точность изготовления ствола, его прямизна, исполнение нарезов, патронника и дульного среза, сохранение стволом своих характеристик играют для снайперского оружия чрезвычайно важную роль. Разнообразные наружные покрытия ствола (тефлон, пластмассовая пленка) служат в основном для повышения коррозийной стойкости, а также для уменьшения нагрева воздуха над стволом. Покрытия поверхности канала ствола обычно предназначены для защиты от коррозии, но на ряде винтовок его используют, чтобы не ухудшать кучность стрельбы. Большое влияние на баллистику оказывают колебания ствола при выстреле. Совершенно избежать их невозможно, их можно либо уменьшить, увеличив толщину стенок ствола и снабдив «ребром жесткости» (шиной), либо обеспечить стабильность этих колебаний, чтобы учесть их при приведении оружия к нормальному бою. Снайперские винтовки стараются снабжать тяжелыми стволами с толстыми стенками. Утяжеление ствола, кроме того, несколько смещает вперед центр тяжести оружия. В целевых винтовках на конце ствола крепится специальный грузик, в боевом образце его роль могут играть дульные устройства. Для повышения жесткости ствол может снабжаться продольными ребрами или долами, которые к тому же улучшают его охлаждение. Однообразие колебаний обеспечивается точностью крепления ствола в ствольной коробке. Часто применяются «свободно вывешенные» стволы – ствол крепится к ствольной коробке в районе патронника, при этом вся его остальная часть остается свободной и не контактирует ни с какими другими частями оружия, выдерживается постоянный зазор между стволом и цевьем. Ствол освобождается от различных креплений и от роли несущей детали, его колебания становятся гармоническими, и их влияние можно учесть при пристрелке. Чтобы избежать искривлений ствола из-за неравномерного нагрева, стволу стараются обеспечить равномерное охлаждение по всей длине и со всех сторон – свободно вывешенный ствол этому также способствует.
Сцепление ствола с затвором должно обеспечивать надежность запирания канала ствола с казенной части и его однообразие от выстрела к выстрелу, симметричное относительно оси канала ствола распределение усилия импульса отдачи на опорные поверхности, плавность работы затвора. Наиболее распространенным стало запирание канала ствола поворотом затвора. Симметричному распределению усилия отдачи и ограничению поворота затвора способствует увеличение числа боевых выступов – если при двух симметричных боевых выступах требуется поворот затвора на 90°, то при трех уже 60°.
Поскольку хорошая меткость стрельбы достигается при неподвижном относительно ложи стволе, в самозарядных винтовках обычно используется система автоматики на основе отвода пороховых газов или отдачи полусвободного затвора. Система выбрасывания гильзы или давшего осечку патрона может быть выполнена различно, но в любом случае должна обеспечивать надежное удаление стреляной гильзы при любой скорости движения затвора и способствовать снижению уровня шума.
Снайпер российской армии с винтовкой СВД. Обратим внимание на прикладку стрелка к винтовке, а также на такие элементы экипировки, как стальной шлем с маскировочным чехлом и бронежилет
Нигде единство стрелка и оружия не проявляется столь ярко, как в снайпинге. А это требует прикладистости оружия, под которой принято понимать соответствие размеров и формы оружия телосложению стрелка, удобство формы и расположения приклада, цевья, органов управления, т. е. качества ложи. Известно выражение: «Стреляет ствол, а попадает ложа». Предпочтение отдается цельным ложам. При разрезной ложе сложнее выдержать однообразие ее пригонки к ствольной коробке.
Спусковой механизм магазинной винтовки обр.1891/1930 г. без предупреждения и регулировки спуска: 1 – шептало, 2 – пятка, 3 – спусковой крючок, 4 – хвост, 5 – шпилька, 6 – спусковая пружина, 7 – винт пружины, 8 – щель
Еще сложнее обеспечить это при складывающемся прикладе, поэтому в снайперском оружии он применяется редко – когда совершенно необходимо обеспечить малые размеры при десантировании или нахождении в машине. Длина приклада должна быть такова, чтобы стреляющая рука не была слишком вытянута или согнута – такое неудобство вызывает сильное мускульное напряжение стрелка и соответственно дрожание оружия. Массивность приклада и сравнительно большая площадь его затылка уменьшают ощущаемую стрелком отдачу. Однообразие прицеливания без заваливания винтовки, правильная постановка головы относительно прицела облегчаются специальным выступом для упора щеки. «Щека» дает снайперу четвертую точку опоры в дополнение к обычным трем – цевью, прикладу и пистолетной рукоятке (выступу шейки ложи).
Ударно-спусковой механизм самозарядной винтовки СВТ: 1 – спусковой крючок, 2 – спусковая тяга, 3 – коромысло (шептало), 4 – курок, 5 – боевая пружина, 6 – автоспуск, 7 – затвор, 8 – разобщитель автоспуска
Спусковой механизм спортивной винтовки СМ-2 с регулировкой спуска: 1 – спусковая коробка, 2 – спусковой крючок, 3 – ось крючка, 4 – пружина усилия, 5 – винт регулировки хода крючка, 6 – шептало, 7 – ось шептала, 8 – пружина шептала, 9 – винт предупреждения спуска, 10 – гнеток, 11 – винт усилия, 12 – пружина предупреждения
Не существует «стандартных» стрелков: разброс роста, ширины плеч, длины шеи и рук, размеров кистей весьма велик. Поэтому во многих винтовках используются регулируемый подлине приклад, регулируемая по высоте «щека». В конструкции современных снайперских винтовок вообще широко используются решения спортивных винтовок.
Интересно такое направление, как «жесткое шасси» – сборка всех элементов винтовки, включая элементы ложи, на жесткой несущей раме.
Большое влияние на результаты стрельбы оказывает спусковой механизм. При слишком тугом спуске стрелок «дергает» оружие, при легком может произойти случайный или преждевременный выстрел. Удобен спуск с предупреждением – спусковой крючок после предварительного хода встает на «предупреждение», после чего для спуска необходимо короткое усилие. Люфт, трение, непостоянство усилия боевой пружины, пружин шептала и спускового крючка дают непостоянное усилие спуска и дополнительный механический шум, что для оружия снайпера недопустимо. В большинстве современных снайперских винтовок возможна регулировка усилия на спусковом крючке, что также позволяет индивидуально «подгонять» оружие под стрелка. Шнеллерный спуск с очень небольшим усилием популярен в высокоточном спортивном оружии, но на боевых винтовках применяется редко.
Очевидно, что сохранение высоких качеств винтовки требует тщательного сбережения и ухода. Поэтому принадлежность к оружию, растворы для чистки, смазка должны подбираться с не меньшей тщательностью, чем параметры патронов и прицелов.
5. Прицелы
Оптические прицелы
Главными достоинствами оптических прицелов являются:
– высокая точность, позволяющая вести стрельбу по удаленным малозаметным целям;
– получение увеличенного изображения цели, позволяющее выцелить наиболее уязвимый ее участок;
– легкость и быстрота наводки «по двум точкам» (прицельная марка – цель), видимым с одинаковой четкостью;
– возможность вести стрельбу в сумерки;
– возможность индивидуальной регулировки прицела под глаз стрелка;
– возможность определять расстояние до цели, корректировать стрельбу.
К недостаткам относятся: сложность устройства, хрупкость оптических элементов, ограничение поля зрения, увеличение массы и размеров оружия. Однако при необходимости качественно улучшить меткость стрельбы с этим приходится мириться.
Стандартный оптический прицел состоит из четырех основных элементов: корпуса (тубуса), оптической системы (объектив, окуляр, оборачивающая система и прицельная сетка с рамкой), механизмов регулировки, кронштейна, дополнительных приспособлений. Объектив формирует в фокальной плоскости действительное, уменьшенное и обратное изображение цели; окуляр формирует мнимое увеличенное изображение, которое уже хрусталиком глаза фокусируется на сетчатке; а чтобы стрелок видел цель неперевернутой, между объективом и окуляром помещают оборачивающую систему. Для компенсации сферической и хроматической аберрации одиночные линзы заменяются наборами собирательных и рассеивающих линз. Используется оптика, просветленная (уменьшение световых потерь за счет переотражения) с помощью специальных прочных покрытий. Перемещение окуляра или оборачивающей системы по оси тубуса позволяет регулировать прицел под глаз стрелка.
Схема устройства оптического прицела телескопического типа: 1 – кольцо окуляра, 2 – барабанчик механизма введения поправок по дальности, 3 – оптическая система объектива, 4 – прицельная сетка, 5 – оборачивающая система, 6 – фокус окуляра, 7 – оптическая система окуляра
К основным оптическим характеристикам прицела относятся кратность увеличения, поле зрения, светосила и удаление выходного зрачка. В маркировке прицела обычно через знак «х» указывают кратность увеличения (часто – округленно) и рабочий диаметр объектива. Удаление выходного зрачка оптических прицелов рассчитывают в несколько сантиметров, дабы стрелок удерживал глаз на удалении от корпуса прицела – во избежание травмы под действием импульса отдачи оружия.
Кратность увеличения и размеры поля зрения находятся в обратной зависимости. Скажем, при кратности усиления 4х угловые размеры поля зрения прицела составляют около 10°, т. е. на дальности 100 м диаметр видимого стрелком круга будет около 17,6 м, на 500 м – 88 м. А если при 10-кратном увеличении угол поля зрения прицела составляет 2°30… то диаметр видимого круга на 100 м составит около 4,4 м, на 500 м – 22 м. Поэтому приходится выбирать между дальностью, разрешением и возможностями наблюдения и сопровождения движущейся цели.
Варианты прицельных сеток оптических прицелов
Для увеличения эффективности стрельбы, возможности «выцеливания по месту» требуется большее увеличение, а для наблюдения используются уже другие приборы – бинокли, например. За рубежом наиболее распространены прицелы с кратностью увеличения около 6х или 10х. В частности, популярны прицелы 6x40 и 6x42. Для дальностей свыше 1500 м используются прицелы с увеличением 15—20х. При 15-кратном увеличении можно опознать на дальности 1000 м предметы с поперечником 100 мм. Под разрешающей способностью понимают способность прибора передавать мелкие детали, в теоретической оптике – раздельно изображать две близко расположенные точки. Разрешающую способность оптических систем обычно указывают в угловых секундах, имея в виду наименьший угол между лучами, проведенными из центра входного зрачка к двум различаемым точкам. То есть чем меньше величина углового разрешения, тем лучше различимы мелкие детали.
Прицельная сетка оптического прицела ПСО-1
Для выверки прицела, введения боковых поправок или установки на другую дальность прицельная сетка перемещается с помощью микрометрических винтов. К дополнительным приспособлениям оптических прицелов относятся защитные бленды, наглазники, устройства подсветки сетки в сумерки, крышки, сменные светофильтры.
В качестве примера рассмотрим несколько оптических прицелов.
Советский прицел ПСО-1 имеет кратность увеличения 4х, поле зрения 6°, оборудован резиновым наглазником и выдвижной блендой. Длина прицела с наглазником и блендой – 375 мм, масса – 0,58 кг. Сетка прицела имеет специальную дальномерную шкалу для определения расстояния до цели высотой 1,7 м с точностью до 50 м. Есть шкала боковых поправок. Прицел снабжен механизмами выверки по дальности (верхний маховичок) и направлению (боковой маховичок). Шкала верхнего маховичка нанесена в сотнях метров, бокового – в тысячных дальности. Устройство подсветки сетки питается от батарейки, вставляемой в корпус. В поле зрения прицела вводится специальная люминесцентная пластина, позволяющая обнаруживать активные источники ИК излучения.
Панкратический оптический прицел 1П69
В 1989 г. был принят на вооружение прицел 1П21 (тема опытно-конструкторской работы «Минута») переменной кратности увеличения от Зх до 9х – панкратический прицел – и полем зрения соответственно 6°11 ’ – 2°23’. С помощью прицельной сетки можно определять дальности до объекта – по нормированным целям высотой 0,75 ми 1,5 м и шириной 0,5 м. Определение дальности в диапазоне от 300 до 900 м и установка углов прицеливания производится одновременно; при изменении кратности увеличения автоматически вводится поправка в положении линии прицеливания. Масса прицела 1П21 – 1,25 кг. Прицел может использоваться на снайперской винтовке или едином пулемете. Прицельная марка и шкала дистанции имеют подсветку с регулировкой яркости.
Панкратический оптический прицел 1П59 переменной кратности увеличения Зх-10х, установленный на снайперской винтовке СВД. Поле зрения прицела – 7,6–2,5°, масса прицела – 1,2 кг
Современные оптические прицелы предлагаются с широким выбором вариантов прицельной сетки. На рисунке – прицельные сетки, предлагаемые фирмой «Шмидт унд Бендер», чьи оптические прицелы широко используются как на коммерческих охотничьих, так и на военных и полицейских снайперских винтовках
Новый снайперский панкратический прицел 1П69 дает кратность видимого увеличения от 3 до 10х, автоматическую установку угла прицеливания на дальностях стрельбы от 100 до 1000 м, его поле зрения – от 7°36′ до 2°30, масса с кронштейном – 1,35 кг, длина – 410 мм. Разрешающая способность прямо зависит от увеличения: при кратности увеличения 10х она составляет 6°, при кратности Зх – 20°.
Оптический прицел М3 «Ультра» (фирмы «Леупольд») на снайперской винтовке М24
Американский оптический прицел с автоматическим определением дальности ART I (Auto-Ranging Telescope – I) имеет переменную кратность увеличения от 3,5х до 9х, массу 0,455 кг, длину 324 мм, диаметр объектива 46 мм, диаметр выходного зрачка 34 мм. Его прицельная сетка состоит из вертикальной и горизонтальной нитей, на каждой из них нанесены по две симметричные риски. Расстояние до цели можно определять по высоте цели между двумя рисками прицельной сетки и установленной кратности увеличения. Сетка прицела ART II имеет основной крест из нитей с двумя точками на горизонтальной линии, которые на расстоянии до цели оказываются на 762 мм (30 дюймов) правее и левее вертикальной линии.
Система «Каст-Файр Солюшинз Райфл Ай-Кэмз» с комплексированием оптического прицела с миниатюрной телекамерой (над окуляром) и предатчиком (впереди прицела)
Устройство и принцип действия другого американского оптического прицела МЗА отличаются от ART прежде всего способом установки на различные дальности. Фиксированное 10-кратное увеличение дает снайперу лучшее разрешение, чем у прицелов ART. Прицельная сетка состоит из вертикальной и горизонтальной нитей «двойного типа» – периферийные части нитей утолщены для лучшей различимости в условиях плохой освещенности. Метки тысячных, нанесенные на тонкую центральную часть с каждой стороны от перекрестия, используются для оценки расстояния до целей известных размеров с помощью обычной формулы тысячных.
Германский «прецизионный» оптический прицел ZF 6x36 массой 0,3 кг с кратностью увеличения 6х и полем зрения 4° имеет сменные сетки, рассчитанные на диапазоны дальностей 100–600 и 600—1300 м.
Оптические прицелы не являются принадлежностью только снайперского или тяжелого оружия. Многие специалисты сходятся на том, что качество прицельных приспособлений способно скорее повысить эффективность стрельбы из оружия, чем модернизация самого оружия (это, разумеется, никак не уменьшает значения основательной подготовки самого стрелка). Поэтому оптические прицелы, наряду с коллиматорными, стали привычны на автоматах и штурмовых винтовках. Так, например, советский универсальный стрелковый прицел УСП-1 (1П29) может ставиться на различные образцы оружия, имеющие планку для установки ночных прицелов – автомат АК 74Н, АК 74М, АН 94, пулеметы РПК74Н и ПКМН. Кратность увеличения прицела – 4х, поле зрения – 8°, масса – 800 г.
Любопытны предложения о совмещении оптического прицела с миниатюрной телекамерой и передатчиком с цифровым каналом связи. Камера через оптический переходник совмещается с окуляром так, что не мешает снайперу работать с прицелом, а сигнал с нее передается через передатчик на прибор наблюдателя, работающего в паре со снайпером, или командира подразделения. Это позволяет корректировать работу снайпера, точнее определять момент выдачи разрешения на выстрел (например, в контртеррористической или полицейской операции), усилить разведывательную роль снайпера. Правда, это утяжеляет оружие, да и сигнал может быть перехвачен противником.
Оптика прицела – причина одного из главных демаскирующих действий – световых бликов. Использование лазерных сканирующих устройств для обнаружения оптических устройств усиливает эту опасность. Вне боевой работы объектив прицела стараются закрывать крышкой, если же необходимо использовать прицел для наблюдения, объектив прикрывают сетчатой накидкой, уменьшающей опасность бликов. Туже задачу решают чехлы с крупноячеистой сеткой в виде пчелиных сот.
Коллиматорные прицелы
Несколько слов стоит сказать и о коллиматорных прицелах. Суть их работы заключается в том, что оптическая система проецирует изображение прицельной марки в сторону выходного зрачка прицела, при этом стрелок видит марку спроецированной в бесконечность (бесконечно удаленная точка), за счет чего и формируется линия прицеливания. В современных системах прицельную марку дает светодиод и зеркальная или линзовая оптическая система. Во многих стрелковых прицелах формируется прицельная марка красного цвета, хорошо различимая практически на любом фоне, так что прицелы стали широко известны под именем «красная точка», хотя, в общем-то, цвет и форма прицельной марки в них могут быть различными. Регулировка яркости свечения прицельной марки позволяет приспосабливать прицелы к условиям освещенности и особенностям зрения стрелка.
Коллиматорный прицел ускоряет процесс прицеливания по сравнению с механическими. Проблемой является юстировка прицела, его надежность и время работы. Поэтому полезна, скажем, система, которая после разряжания батарейки прицела оставляет вместо красной точки черную – прицел становится оптическим с кратностью увеличения 1х.
Ночные прицелы
Возможность ведения боевых действий ночью, в условиях ограниченной видимости ценилась всегда. И всегда одной из главных проблем тут была возможность ведения прицельной стрельбы. О значении ночных прицелов свидетельствуют хотя бы постоянные упоминания их в оценках опыта второй чеченской кампании.
Крепящиеся на оружие съемные фонари-осветители, люминесцентные насадки или вставки для механических прицельных приспособлений предлагались еще в начале XX в. Но подлинное решение лежало в иной области спектра – инфракрасной. Инфракрасная (ИК) область спектра занимает диапазон длин волн от 0,7 до 3 мкм (ближняя или «коротковолновая» зона ИК диапазона) и от 3 до 5 мкм (начало средней зоны ИК диапазона). В основу работы таких оптико-электронных приборов положен принцип преобразования ИК изображения в видимое. Основой конструкции служит электронно-оптический преобразователь (ООП), общая схема которого была разработана еще в 1930-е годы В.К. Зворыкиным. Работа ООП основана на явлении внешнего фотоэффекта. Известно, что световой поток можно рассматривать и как электромагнитную волну, и как поток частиц – квантов. Способность квантов «выбивать» электроны с поверхности какого-либо вещества и определяет фотоэффект, причем «выход» электронов зависит от плотности и интенсивности светового потока. Волновые свойства света проявляются в зависимости от чувствительности вещества к фотоэффекту от длины световых волн.
ЭОП представляет собой электровакуумный прибор, на передней стенке которого нанесен полупрозрачный фотокатод, на задней – люминесцентный экран. ИК лучи, падая на фотокатод, выбивают из него электроны, которые ускоряются электрическим полем, фокусируются электронной линзой, образованной специальными электродами, и устремляются к экрану. Ударяясь в экран, они вызывают его зеленоватое свечение. Так на экране формируется видимая глазом «картинка».
Схема трехкамерного ЭОП с оптоволоконными системами: I, II, III – первая, вторая и третья ступень усиления; 1 – ИК излучение, 2 – волоконно-оптическое входное окно, 3 – фокусирующие электроды, 4 – волоконно-оптическая соединительная плата, 5 – волоконно-оптическое выходное окно, 6 – выходное изображение видимого диапазона, фосфорный (люминесцентный экран)
Для получения достаточно яркого изображения требуется либо подсвечивать местность ИК прожектором, либо дополнительно усиливать яркость, обеспечиваемую излучением ночного неба, светом звезд, Луны.
По первому способу работают так называемые «активные» приборы ночного видения («приборы нулевого поколения», как их иногда называют). К ним относились американский «Снайперской» и германский «Вампир» времен Второй мировой войны. Оба включали «телескоп» с ЭОП, ИК прожектор и носимый блок питания напряжением около 30 кВ. При кратности увеличения от4х до 6х приборы действовали на дальности до 60 м, т. е. на дальностях ближнего боя.
Этот ранний этап развития приборов ночного видения характеризовался использованием ЭОП с кислородно-серебряно-цезиевым или кислородно-серебряно-цинковым фотокатодом и прожекторов на основе электрической лампы и ИК фильтром.
ЭОП нулевого поколения продержались на вооружении достаточно долго – тот же «Снайперской», например, оставался на вооружении армий ряда стран еще в 1960-е годы. Но к тому времени уже не были терпимы такие недостатки активных прицелов, как значительные размеры и масса, демаскирующее действие ИК прожектора, образование помех от пыли или тумана на краях поля зрения.
Среди пассивных (бесподсветных) приборов с усилением естественной ночной освещенности выделяют несколько поколений, отличающихся прежде всего типом электронно-оптических преобразователей. Тут стоит вспомнить, что означают некоторые приводимые далее характеристики. Так, коэффициент усиления света показывает, во сколько раз световой поток, наблюдаемый на выходе из окуляра ПН В, превышает световой поток, поступающий на вход оптической системы прибора от объекта наблюдения. Как и для оптико-механических приборов, для оптико-электронных одной из главных характеристик является разрешающая способность. Разрешающую способность приборов, включающих ЭОП, чаще оценивают не в угловых величинах, а числом чередующихся светлых и темных линий (штрихов), укладывающихся на 1 мм испытательного объекта. Разрешающая способность зависит и от оптической системы прибора, и от разрешения ЭОП.
Итак, в бесподсветных приборах первого поколения (I) происходит многокаскадное усиление яркости (это был уже существенный шаг вперед по сравнению с ЭОП по схеме Зворыкина). Первые бесподсветные каскадные приборы ночного видения все еще отличались большими размерами из-за необходимости охлаждения ЭОП и высоковольтных источников питания. Решающий сдвиг здесь связан с введением многощелочного фотокатода, который имел большую чувствительность, на несколько порядков более низкий темновой ток и не требовал охлаждения. Вместе с дальнейшей работой по оптике и миниатюризацией источников питания это позволило создать новые стрелковые прицелы и при этом уместить весь комплекс прицела в одном корпусе.
Принцип работы усилителя на микроканальной пластине:
1 – фотокатод, 2 – микроканальная пластина, 3 – люминесцентный экран, 4 – стенка микроканала, 5 – электрод, 6 – выходной поток электронов, 7– попадание первичного электрона, 8 – вторичные электроны
В нашей стране система ПНВ этого поколения сформировалась к концу 1960-х годов. Вошел в эту систему и ночной прицел НСП-3 для автомата. И все же ЭОП первого поколения был свойственен ряд недостатков. Они давали недостаточно яркую и контрастную «картинку». Разрешение получалось весьма неравномерным – 25–36 штрихов на миллиметр по центру и 5 штрихов на миллиметр по краю поля зрения. Прицелы были весьма чувствительны к засветке яркими источниками света – например, вспышкой выстрела. Да и стеклянные баллоны ЭОП были чувствительны к импульсу отдачи оружия.
Дальнейшая доработка, связанная с повышением ИК чувствительности и помехозащищенности приборов, увеличением поля зрения и т. д., привели к появлению в 1970-е годы новых ПНВ того же поколения, в число которых вошел и ночной универсальный стрелковый прицел НСПУ (1ПН34, тема «Альфа») с трехкаскадным ЭОП. Для предохранения от засветки в нем служит ирисовая (лепестковая) диафрагма. Для повышения контрастности изображения при наблюдении на зеленом фоне при повышенной освещенности служит красный светофильтр, при слабом тумане или дымке – желтый. Масса прицела – 2,2 кг, кратность увеличения – 3,5х, угол поля зрения – 5,4°. НСПУ позволяет вести ночью огонь на дальности прямого выстрела оружия. В лунную ночь или при использовании подсветки дальность возрастает, при низкой облачности, задымлении – сокращается. Усовершенствование ЭОП и переход в электрической части на малогабаритную элементную базу позволил сделать ПНВ легче и экономичнее (а время непрерывной работы прибора на одном элементе питания увеличивает автономность подразделения) – пример тому унифицированный прицел 1ПН58.
В качестве аналога можно упомянуть американский AN/PVS-2, также выполненный на основе трехкаскадного ЭОП с электростатической фокусировкой. Кратность увеличения этого прицела – 4х, поле зрения – 10,4– 10,7°, масса – 2,6 кг, дальность действия, в зависимости от освещенности – 300–400 м. Для увеличения энергии световых лучей, попадающей на вход прибора, и сокращения при этом осевой длины прицела, используются и зеркально-линзовые объективы как, например, в германском «Орион-80».
В ЭОП поколения «1+» уже использовались металл и керамика, а для формирования изображения и сопряжения экранов и фотокатодов смежных преобразователей ввели оборачивающие устройства на основе пластин из оптоволоконных элементов (волоконная оптика использовалась уже в упомянутом AN/PVS-2). Повысился коэффициент полезного действия усилителей и четкость изображения. Намного возросла устойчивость к импульсу отдачи. Увеличилось и разрешение – до 50 штрихов на миллиметр в центре поля зрения и до 28 по краям. Как видим, и соотношение между разрешением в средней части «картинки» и по ее краям улучшилось.
Электронно-оптический преобразователь III поколения с фотокатодом на арсениде галлия: 1 – фотокатод, 2 – микроканальная пластина, 3 – экран, 4 – волоконно-оптическая система оборота изображения на 180°, 5 – источник питания
Второе поколение (II) составили появившиеся в 1970-е годы приборы с усилителем на микроканальной пластине (МКП). МКП представляет собой плоский диск из полупроводникового материала с множеством каналов, внутренняя поверхность которых покрыта веществом, обладающим вторичной электронной эмиссией. Электроны, выбиваемые с фотокатода, попадают в открытый торец микроканала, выбивая из стенок вторичные электроны. То есть каждый микроканал МКП работает как фотоумножитель, лавинообразно увеличивающий число выбиваемых электронов. Диаметр и число каналов подбираются из соображений лучшей разрешающей способности и прочности МКП. Диаметр каналов составлял сотые доли миллиметра. Коэффициент усиления яркости вырос более чем в 20 раз по сравнению с поколением «1+» – для поколения «1+» он не превышал 1000, у поколения «II» достиг 20 000. Разрешение увеличилось до 30–50 штрихов на миллиметр практически по всему полю зрения. Исчезли характерные для поколений «I» и «1+» искажения изображения, появилась автоматическая регулировка яркости изображения. Преимуществом усилителя яркости на МКП является также меньшая чувствительность к засветкам – МКП «локализует» световые помехи, не вызывая засветки всего поля зрения. Кроме того, применение МКП уменьшает размеры прибора.
К пассивным прицелам на МКП относится отечественный НСПУ-3 (1ПН51), обеспечивающий надежное обнаружение человека на дальности до 300–600 м. Масса НСПУ-3 – 2,1 кг (вместе с источником питания на 6,25 В), полная длина – 340 мм, кратность увеличения у НСПУ-3 – 3,6х, угол поля зрения – 9,5°.
К поколению «II» относится и американский AN/ PVS-3A с кратностью увеличения 4х, полем зрения 10°, массой 1,45 кг и длиной 330 мм. Прицел обеспечивает стрельбу по живой силе на дальности до 150–250 м. А английский М1500 при кратности увеличения Зх, массе 1 кг и длине 265 мм действует на дальности до 500 м.
В середине 1990-х годов появились ПНВ на основе ЭОП поколения «П+». Создание многощелочных фотокатодов с повышенной чувствительностью, улучшение оптических систем и позволило в этом поколении качественно улучшить характеристики приборов усилительного типа, повысить разрешающую способность – не менее 45 штрихов на миллиметр. Причем высокое разрешение сохранялось даже при низкой освещенности (свет звезд, например). Появилась возможность использовать светящиеся прицельные марки.
ЭОП поколения «П+» использован, например, в экспортном прицеле NV/S-17, предлагаемом «БелОМО» для автоматического стрелкового оружия. При массе 1,2 кг этот прицел имеет кратность увеличения 3,5х и поле зрения 12°.
Поколение ЭОП «II супер» отличается еще большей чувствительностью фотокатода и разрешением около 55 штрихов на миллиметр.
Уменьшение размеров и электропотребления ЭОП позволило выполнить ночные прицелы для стрелкового оружия в меньших габаритах и с массой менее 1 кг.
Ночные бесподсветные прицелы пришли и на «коммерческое» оружие. Пример тому – прицел ПОН-5 с электронно-оптическим преобразователем I поколения, с подсветкой прицельной сетки
Модульный принцип построения позволил создать новые семейства ночных прицелов для различных видов оружия – как, например, российские прицелы серии 1ПН93, включая прицел 1ПН93-3 для применения со снайперской винтовкой СВД. С другой стороны, появилась возможность использовать ночные прицелы как «ночную приставку» к установленному на оружии оптическому прицелу.
Зависимость дальности действия и качества изображения ПНВ усилительного типа от уровня естественной освещенности не дает забыть о необходимости дополнять приборы осветителями. Правда, теперь это миниатюрные, встраиваемые непосредственно в корпус ПНВ модули на основе ИК полупроводниковых лазеров или светодиодов.
Так, например, российский унифицированный прицел НСПУ-5 (1ПН83), выполненный на основе ЭОП поколения «II», имеет встроенный в корпус ИК лазерный осветитель («подсветчик»). Диаметр подсвечиваемой на дальности 300 м зоны – 5–6 м. В сочетании с автоматической регулировкой яркости и регулируемой стрелком яркостью прицельной марки это позволяет работать в широком диапазоне внешних условий – от полнолунных ночей (когда достаточно естественной ночной освещенности) до почти полной темноты, опознавая цель типа «человек в полный рост» на дальности до 300 м. Кратность увеличения НСПУ-5 – Зх, поле зрения – 7°, масса прицела – 1,45 кг, длина – 300 мм.
Между тем еще в середине 1980-х годов появились фотокатоды со светочувствительным материалом на основе арсенида галлия, обладающие большей чувствительностью и «выходом» электронов. Их применение в сочетании с новыми вакуумными технологиями позволило создать ЭОП поколения «III» – также с использованием МКП. Спектральная чувствительность ЭОП сместилась несколько дальше в ИК диапазон, а это повысило контрастность изображения. Параллельно улучшалась оптическая система, дабы полнее реализовать достоинства нового поколения ЭОП. Чувствительность ПНВ поколения «III» выросла более чем на треть, выросло и разрешение, так что они могут работать при меньших уровнях освещенности (в темные ночи, в подземных сооружениях без освещения). Дальность действия возросла на 30 %, так что прицельная дальность стрельбы ночью приблизилась к дневной.
Уже в последние годы XX в. появились приборы поколения «Ш+» с увеличенной вдвое против поколения «III» чувствительностью и разрешением 55 штрихов на миллиметр и более.
Следующим шагом стали применяющиеся с 1970-х годов тепловизионные приборы (ТПВП). Эти приборы «переводят» в видимую область спектра не отраженные лучи, а собственное тепловое излучение людей, техники, активных приборов. Это излучение занимает значительную часть ИК диапазона, именуемую иногда «тепловым И К диапазоном». Нашли применение спектральные диапазоны 3–5 мкм и 8—14 мкм, соответствующие сравнительно широким «окнам прозрачности» – участкам спектра, в которых пропускание лучей атмосферой лучше. К тому же максимум теплового излучения человеческого тела приходится ориентировочно на длину волны 9,3 мкм. В этих диапазонах работают используемые фотоприемники (детекторы). Дальность действия ТПВП не зависит от уровня естественной ночной освещенности, они сохраняют работоспособность, в условиях засветок интенсивными источниками света. Тепловое излучение хорошо распространяется в условиях пониженной прозрачности атмосферы, задымления, через сети, ветви, а это позволяет ТПВП работать в тумане, при постановке обычных дымовых завес обнаруживать замаскированные цели. Поскольку интенсивность и спектр теплового излучения, испускаемого нагретым телом, зависят от свойств тела и его температуры, изображение получается довольно контрастным и позволяет выделять нужный объект на фоне других нагретых тел, хотя получаемая картинка менее привычна для восприятия, чем изображение, формируемое ПНВ усилительного типа.
Для улавливания теплового излучения объектов используются решетки-матрицы миниатюрных детекторов, которые преобразуют ИК сигналы в электрические, подаваемые на предварительный усилитель. Здесь они перемножаются и с помощью логической схемы преобразуются в сложный видеосигнал. Развитию и широкому применению тепловизионных приборов способствовало быстрое развитие микропроцессорной техники, цифровых методов обработки и визуализации сигнала. Портативные тепловизионные приборы уже нашли применение в комплексах разведывательной аппаратуры, в танковых системах управления огнем, в ПТРК, со стрелковыми прицелами дело чуть сложнее. Хотя тепловизионные прицелы уже включаются в комплект снайперских винтовок нормального и крупного калибра, предлагаются для пулеметов и гранатометов, цена их пока многократно превосходит цену самого оружия. Возможности улучшения характеристик ТПВП, включая уменьшение их размеров, массы и энергопотребления ожидают, в частности, от замены линеек детекторов и оптико-механической системы развертки изображения приборами на основе фокально-плоскостных матриц (с использованием приборов с зарядовой связью), не требующих такой механической развертки и устройств глубокого охлаждения. Не стоит, правда, доверять заявлениям о ТПВП, как об «абсолютном средстве наблюдения и прицеливания» – хотя тепловидение действительно позволяет обнаруживать цели за легкими укрытиями, «видения сквозь любые стены» оно не дает.
Интересны комбинированные (с двумя или более каналами, но единым входом) и комплексированные (с отдельными входами каналов) прицелы «день/ночь», отвечающие требованиям всепогодности, круглосуточности и высокой помехозащищенности. Так, в прицеле французской фирмы «Сопием» дневная ветвь расположена над ночной, а изображение ее проецируется на окуляр через зеркало и призму. В качестве ночной ветви может использоваться трубка с ЭОП поколений «II» или «III». В «модульной прицельной системе» F7201 американской компании ITT модуль ЭОП поколения «III» может вставляться между трубкой с прицельной сеткой и окуляром оптического прицела. Примером отечественного комбинированного прицела может служить ПОНД-4. В прицеле используется ЭОП поколения «П+» с прямым переносом изображения, мультищелочным фотокатодом и усилителем на МКП, автоматическая регулировка яркости. Кратность увеличения обоих каналов – 5х, поле зрения – 6,5° («день») и 8° («ночь»), масса прицела – 1,75 кг, напряжение источника питания – 3 В. Переключение каналов производится рычажком.
Далее мы рассмотрим ряд состоящих на вооружении и опытных снайперских винтовок различных стран мира.