ЭКСПЕРИМЕНТАЛЬНЫМ ИССЛЕДОВАНИЯМ ЭВОЛЮЦИИ в этой отрасли знаний еще только предстоит стать масштабнее, смелее, увлекательнее. Но уже сейчас ставятся небывалые новаторские эксперименты. Так, в рамках одного текущего исследования на большое поле постоянно закачивается углекислый газ, поднимая там уровни выброса в атмосферу до тех, что будут по прогнозам через пятьдесят лет. Станут ли в этих условиях эволюционировать растения, и если да, то как?
Через двадцать лет, а может быть, и раньше нас завалят результатами. Возможно, по мере поступления новых данных ситуация изменится, но из того, что мы уже знаем, общие итоги ясны. Когда ставится эксперимент, при котором многочисленные популяции испытывают одинаковое воздействие окружающей среды, то они, как правило, эволюционируют очень похожим образом. И это работает как в случае с растениями, защищенными от набегов кроликов, так и в случае с ящерицами, вынужденными использовать узкие насесты. Саймон Конвей Моррис этому бы точно порадовался. Эволюция, на самом деле, повторяема.
Но данный результат не такой уж неожиданный. Обсуждая конвергентную эволюцию в первой части книги, я отмечал, что близкородственные популяции или виды эволюционируют в целом одинаково, потому что они похожи генетически. Естественный отбор работает с одним и тем же генетическим материалом, а значит, как правило, выдает одинаковое решение. И наоборот, у дальних родственников, вероятней всего, будут развиваться разные адаптивные реакции на похожие проблемы, которые ставит окружающая среда, начиная с различий в генетическом строении и фенотипах. Полевые эволюционные эксперименты всегда начинаются с очень похожих популяций, обычно с особей из одной исходной. В результате эксперименты склонны обобщать параллельные эволюционные реакции.
Но это вовсе не означает, что эволюционное изменение будет одинаковым у разных экспериментальных сообществ. Как раз наоборот, всегда присутствует некоторая доля вариативности. Так, к примеру, в исследовании Нэша Терли, который выращивал растения, защитив их от кроликов, на участках, разбитых и огороженных в одно и то же время, скорость роста растений часто варьировалась.
Например, на четырех участках шестилетнего возраста у самой быстрорастущей популяции скорость роста была на пятьдесят процентов выше, чем у самой медленнорастущей. Похожие расхождения наблюдались среди девяти-, тринадцати- и двадцатипятилетней популяций. Несмотря на то что они росли без кроликов одинаковое количество времени, количественно отличались друг от друга своей эволюционной реакцией. Точно так же в корнуэльском эксперименте, где примула вечерняя была защищена от насекомых, растения начали зацветать гораздо раньше, но степень эволюционного сдвига между участками заметно варьировалась: на некоторых участках появлялось в пять раз больше цветов раньше в сезон, чем на других.
Подобная вариативность может указывать на степень неопределенности эволюционной реакции даже у близкородственных популяций, пребывающих в одинаковых избирательных условиях. Подобно большинству научных исследований, изучение экспериментальной эволюции сфокусировано на общих тенденциях, которые анализируются в виде статистических выкладок. А исключения остаются незамеченными. И потому появление отклоняющейся от нормы популяции, адаптирующейся к новым условиям своим способом, может остаться без внимания. В научных публикациях даже не сообщается о такого рода сырых фактах, так что о подобных исключениях из правил, «белых воронах», тех, кто предпочел иной эволюционный путь, читатели могут даже не узнать. Таким образом, степень расхождения меньшинства популяций с основной массой зачастую неясна.
Более того, в исследованиях часто сравниваются самые разные признаки, но делается акцент только на тех, которые эволюционируют похожим образом. Те, что развиваются по-разному, не продемонстрируют статистически значимые тенденции и, следовательно, будут проигнорированы, даже несмотря на то, что они могут стать доказательством дивергентных моделей адаптации.
Конечно, наличие варьирования в реакциях популяции, подверженной воздействию одинаковых условий окружающей среды, совсем не обязательно свидетельствует об эволюционном непостоянстве. Ведь может быть и так, что условия обитания популяций слегка отличаются друг от друга.
А что если отклонения в свойствах растений отражают адаптацию к мельчайшим различиям участков в составе почвы, количестве улиток или тени от деревьев? Не могут ли различия в длине конечностей ящериц отражать легкие отличия видов кустов на разных экспериментальных островах?
Нам этого не узнать. Большое преимущество полевых экспериментов в том, что они осуществляются на природе и подвержены всем разнородным селективным воздействиям, которые встречаются в реальном мире. Это не экстрагирование природы и не упрощение ее – это реальная демонстрация того, с чем популяции сталкиваются каждый день.
Но у полевых экспериментов есть один большой недостаток – вы не можете проконтролировать все. Природа изменчива даже в пределах коротких расстояний. И эти различия могут помешать толкованию результатов. Вот почему ученых из лабораторий передергивает от одной только мысли провести эксперимент в поле: отсутствие контроля вызывает у них нервную дрожь. Если вы действительно хотите знать, насколько повторяема эволюция и насколько предсказуемо избирательные условия выдадут одинаковый эволюционный результат, тогда проводите свой эксперимент в лаборатории, где условия среды обитания можно четко контролировать. Благодаря своей экспериментальной строгости такие исследования будут соотносимы с реальным миром, но чтобы досконально проверить постулат Гулда, пожалуй, стоит изменить подход.
Часть третьяЭволюция под микроскопом
Глава девятаяПовторное прокручивание пленки
Культовые места изучения процесса эволюции. Галапагосские острова. Ущелье Олдувай. Австралия. Мадагаскар. А Ист-Лансинг, штат Мичиган?
Как ни странно, одно из самых важных исследований процесса эволюции, что проводились за последние десятилетия, было сделано на основе изучения эволюционного изменения, случившегося в самом центре штата Великих озер.
Кабинет 6140 факультета медико-биологических и естественных наук университета штата Мичиган выглядит как обычная биологическая лаборатория. Два высоких, с черным покрытием стола и полки, идущие по центру лаборатории, образуют три прохода. Сбоку от столов находятся рабочие места, где сидят исследователи, окруженные различным лабораторным инструментарием: бутылки с химическими реактивами на полках, ряды чашек Петри, а еще детали компьютерной и электронной оснастки. Стены увешаны обычным набором открыток, скучноватыми научными карикатурами и фотографиями животных и знаменитых ученых. Какой-то непонятный кусок коры свисает с полки, удерживаемый в горизонтальном положении двумя согнутыми скрепками. Детские игрушки и другие безделушки торчат из разных углов и над компьютерными мониторами. Вдоль одной стены стоит стильный холодильник со стеклянной дверцей, забитый химическими препаратами, и еще несколько крупных аппаратов.
Противоположная стена состоит из больших окон, что тянутся до потолка и выходят во двор кампуса.
Во многих лабораториях есть свои характерные особенности, и эта не исключение. На нескольких окнах наклеены голубые листочки – по одному на каждое стекло – с написанными на них крупным шрифтом цифрами – 000 £6.
По крайней мере, так это выглядит, когда смотришь на надпись снаружи. А если находишься на улице, шестью этажами ниже, то цепочка цифр, прочитанная в зеркальном отражении, выглядит вполне вразумительно. Но мы вернемся к этому позднее.
В лаборатории толпятся ученые, преимущественно молодые, одетые буднично, в джинсы и футболку. Но один молодой человек выделяется среди них своим ярким облачением разных оттенков голубого – на нем нечто среднее между заляпанным лабораторным халатом и мантией волшебника. Мы еще вернемся к нему, но тоже чуть позже.
Центр средоточия лаборатории – ее суть и смысл – массивное оборудование, стоящее у двери. Размером и внешним видом оно напоминает горизонтальные морозильные камеры, стоящие на заправочных станциях, в которых держат мороженое, воду и прочее. Они, конечно, выглядят явно современнее и технически более продвинуто, но все равно не было бы ничего удивительного, если бы вы нашли там упаковку мороженого.
И, наконец, момент, которого я ждал, – мой проводник открыл крышку морозильника, позволив мне заглянуть внутрь. Я наклонился, и мое лицо обдало теплым воздухом. Определенно никакого шоколадного мороженого на палочке в этом металлическом ящике нет. Вместо него в два ряда выстроились семь маленьких стеклянных колб, каждая плотно вставлена в отдельный держатель на металлической пластине. Эта металлическая платформа медленно перемещается вперед-назад, вправо-влево, осторожно взбалтывая маленькое количество жидкости в каждой колбе.
Должен признаться, что я удивился и, возможно, слегка разочаровался. Здесь я присутствовал у самых истоков одного из наиболее важных исследований в области эволюционной биологии за последнюю четверть века. Но все выглядело очень… скромно.
Непримечательно. Не впечатляюще. Просто маленькие контейнеры с прозрачной жидкостью, медленно плещущейся туда-сюда.
ИСТОРИЯ О ТОМ, КАК ТАКИЕ МАЛЕНЬКИЕ КОНТЕЙНЕРЫ обеспечили такой большой всплеск, началась не в лаборатории Мичигана, а почти сорок лет назад в горах Аппалачи Северной Каролины. Там молодой магистрант Рич Ленски установил проверенную временем почвенную ловушку для наблюдения за популяциями жуков. Почвенные ловушки работают очень просто. Ученый выкапывает яму и ждет, когда туда упадут животные. Они бредут себе спокойно и вдруг – хлоп – падают в эту яму и не могут из нее выбраться. Размер ямы зависит от того, кого вы собираетесь поймать. Для жуков подойдет отверстие размером с пластиковый стакан. Но для ящериц и змей нужно выкапывать ямы размером с большое ведро.