ЧЕРЕЗ ДВЕ ТЫСЯЧИ ГЕНЕРАЦИЙ, появившихся за время ДЭЭ, двенадцать популяций усилили свою выносливость примерно в равной степени. Сообщив об этом результате[107] в первой с начала эксперимента научной публикации, Ленски предположил, что все популяции эволюционировали одинаково. Тем не менее он признавал, что возможно и другое объяснение, а именно, что популяции искали разные пути адаптации к новым условиям, и скорость этой адаптации оказалась примерно одинаковой у всех.
Эти два возможных варианта породили разные прогнозы относительно генетики популяций. Гипотеза параллельной адаптации предполагает, что генетические изменения, возникшие в популяциях, были очень похожими, в то время как гипотеза о разрозненных адаптациях с сопоставимым влиянием на адаптивную способность указывает на то, что популяции претерпели очень разные генетические изменения. Но так обстояли дела в начале 1990-х годов, когда исследование генов и геномов было по большей части неосуществимой мечтой. И как различать два этих возможных варианта, было непонятно.
Решить эту головоломку выпало тому самому Майклу Травизано. Исследовательская карьера Травизано началась в лаборатории Ленски (в девятой главе я уже упоминал об одной научной публикации из его докторской работы). Изначально Травизано пришел в лабораторию в качестве специалиста в области цитологии, занимавшегося до этого изучением овариальных клеток хомяков и причин, почему они становятся злокачественными. Теперь, оглядываясь назад, он понимает, что занимался исследованиями экспериментальной эволюции, но тогда их представляли совсем иначе. Скорее ученые пытались разобраться в том, что заставляет клетку становиться метастатической, выискивая повторяемые реакции на определенные экспериментальные манипуляции.
Имея за плечами подобный опыт и приступив вместе со всеми к долгосрочному эволюционному эксперименту, Травизано размышлял над тем, как оценивать степень повторяемости эволюции.
Работая с Ленски, он задумал оригинальный эксперимент, чтобы выяснить, одинаково ли адаптируются все двенадцать популяций ДЭЭ. Секрет, как они поняли, заключался в том, чтобы поместить популяции в другую среду и наблюдать за тем, как они там будут себя вести. Если все популяции эволюционировали генетически одинаково, адаптируясь к условиям ДЭЭ, то тогда, будучи генетически похожими, они все должны одинаково хорошо чувствовать себя в новом окружении. Если же у популяций выработались разные генетические адаптации к условиям ДЭЭ, тогда степень их адаптации к новым условиям может варьироваться.
Чтобы проверить эту идею[108], Травизано взял образцы из двенадцати популяций E.coli из 2000-й генерации и поместил их в разную среду. Вместо того чтобы дать им глюкозу в качестве источника энергии, он добавил в среду другой вид сахара – мальтозу.
За первые две тысячи генераций ДЭЭ все популяции стали гораздо продуктивнее использовать глюкозу и, соответственно, росли намного быстрее своего предка. А как эта адаптация к глюкозе повлияет на их способность использовать мальтозу? Чтобы сравнить их с изначальным состоянием, Травизано залез в замороженные архивы, возродил предковую популяцию ДЭЭ и оценил, насколько хорошо она растет на мальтозе.
В среднем способность потреблять мальтозу не изменилась вовсе. Но эта средняя величина скрывала огромное количество варьирования от одной популяции к другой. Пять из них фактически стали использовать мальтозу хуже (иногда гораздо хуже), чем их предок. У этих популяций адаптация к использованию глюкозы далась ценой уменьшения способности потреблять мальтозу. И не забывайте, что в ходе долгосрочного эволюционного эксперимента популяциям фактически никогда не давали мальтозу: уменьшенная способность ее использовать была всего лишь случайным побочным следствием изменений, случившихся в процессе адаптации к повышенному потреблению глюкозы.
И наоборот, другие семь популяций проявили себя лучше в своей способности потреблять мальтозу.
Это означает, что к 2000-й генерации двенадцать популяций ДЭЭ заметно варьировались генетически. Даже несмотря на то что скорость их роста на глюкозе была приблизительно одинаковой среди популяций, под этим единообразием скрывалась неоднородность генетических различий, которые развивались у популяций.
С тех пор, как Травизано опубликовал свое исследование, был осуществлен ряд концептуально схожих проектов с очень похожими результатами. Несмотря на то что, оказавшись под воздействием схожих избирательных условий, реплицированные популяции внешне адаптировались одинаково, после того, как их поместили в совершенно новое окружение, выявилось скрытое генетическое расхождение, приводящее к неоднородности реакций на новые условия. Другими словами, внешность может быть обманчива: эволюция в идентичном окружении, начавшаяся с одинаковой исходной точки, не настолько детерминирована, как это может показаться!
А потому мы сразу же перейдем к следующему вопросу. Предположим, что популяции на протяжении многих поколений эволюционировали в одном окружении. Станут ли различия, приобретенные за это время, влиять не только на то, как они будут изначально выживать в новом окружении, но и на то, как они впоследствии адаптируются к новым условиям? Некоторые исследования проверяли данный вопрос, но все равно эталоном является работа Травизано.
Обнаружив неоднородность исходной реакции двенадцати популяций, помещенных в среду с мальтозой, Травизано позволил популяциям адаптироваться к этому новому ресурсу.
Данный эксперимент проводился в точности так, как ДЭЭ, за тем лишь исключением, что в качестве питательного вещества использовалась не глюкоза, а мальтоза. И так же, как в ДЭЭ, популяции со временем адаптировались: тысячу генераций спустя все популяции лучше приспособились к потреблению мальтозы, чем их изначальный предок. Более того, степень адаптации была связана с изначальной приспосабливаемостью каждой популяции: те, кто сначала плохо использовал мальтозу, продемонстрировали гораздо большую степень увеличения адаптации в сравнении с теми популяциями, которые сначала справлялись с этой задачей хорошо.
В действительности этот эффект был настолько велик, что к концу эксперимента все популяции почти одинаково адаптировались к мальтозе – изначальные различия в их приспособляемости существенно сократились.
Но некоторая разница была: те популяции, которые лучше всего использовали мальтозу в начале эксперимента, продолжали расти примерно на десять процентов быстрее, чем те, которые изначально хуже всех потребляли мальтозу. Результаты по размерам клеток оказались похожими. Присутствовало некое подобие общей тенденции: две популяции, у которых вначале были самые маленькие клетки, пережили наибольший рост, а популяции с самыми крупными клетками – наибольшее уменьшение размера. Но также появилось много противоречий, когда отдельные популяции, изначально имевшие одинаковый размер клетки, эволюционировали по-разному.
Другими словами, изначальное расхождение популяций в степени адаптации к использованию мальтозы, которое развилось случайно, пока популяции ДЭЭ эволюционировали на глюкозе, имело долгосрочные последствия. Тысячи генераций, адаптирующихся к мальтозе, не смогли стереть импульс генетической дифференциации.
Если оценивать его с позиции Гулда, то данный результат значителен. Даже когда популяции эволюционируют параллельно, скрытые различия, приобретаемые в процессе эволюции, могут развести их по разным направлениям, если они окажутся в совершенно новых условиях.
КНИГА «ЭТА УДИВИТЕЛЬНАЯ ЖИЗНЬ» имела громадное для науки значение. Несмотря на то что она была предназначена для широкой публики, цитаты из нее приводятся почти в четырех тысячах научных публикаций. Это огромное количество. Обычно ученые довольны, когда их работа собирает пятьдесят или сотню цитирований. Фраза «прокручивание пленки жизни» вошла в лексикон. И в данном случае не требуется пояснений, так как каждый знает, что она означает.
И хотя Джон Битти слишком деликатен, чтобы сказать это напрямую[56], Гулд и вправду запутал всех своей метафорой[109]. Указания Гулда «нажать кнопку перемотки… вернуться в прошлое… а затем проиграть пленку повторно» вполне понятны. Но это совсем не то, что имел в виду Гулд. Или, по крайней мере, Гулд имел в виду нечто большее.
Две исследовательские программы, независимые друг от друга, должны были проверить идею Гулда. Восприняв его слова буквально, исследователи, проводившие ДЭЭ и другие похожие эксперименты, прокручивали пленку либо в буквальном смысле, возрождая предковые популяции, либо осуществляя повторы в стоящих рядом колбах.
Альтернативный метод помог сделать то, что предлагал сделать Гулд, даже если это не совпадало с его хитрой метафорой. В этих исследованиях популяции подвергали воздействию разных условий, чтобы увидеть, насколько эволюция устойчива к подобным влияниям. И всегда ли эволюция придет к той же конечной точке или же результаты зависят от начальных условий и от того, что происходит по ходу?
И нет ничего удивительного в том, что эти два подхода дают в среднем разные результаты. Если популяции начинают одинаково и находятся в одинаковом окружении, то обычно они эволюционируют более или менее похоже. В том, какая мутация возникнет, присутствует доля случайности, и эта случайность заставляет популяции дивергировать – иногда заметно, но в основном слегка, при условии, что они остаются в том окружении, к которому адаптировались.
И наоборот, если они начинают по-разному или переживают разные события, то популяции, вероятней всего, станут дивергировать. На удивление мало исследований[110] изучало этот сценарий – тот сценарий, на котором и акцентировал внимание Гулд своей фразой. Но данные исследования демонстрируют, что эволюционный итог будет совершенно иным.
Битти завершил свой анализ, предположив, что два этих подхода дополняют друг друга. Первый исследует, будут ли похожие на старте популяц