Удивительная философия — страница 13 из 16

Макс Планк (1858–1947)


Эйнштейн перенес идею о квантах на область света и создал новое учение о нем. Вспомним, что Ньютон считал свет потоком корпускул, Гюйгенс и Юнг рассматривали его как волны, а Фарадей и Максвелл – как колебания электромагнитного поля. Эйнштейн совместил все эти представления и создал теорию, по которой свет имеет корпускулярно-волновую природу. Он распространяется квантами, то есть энергетическими порциями, которые были названы фотонами(от греч. photos– «свет»). С одной стороны, фотон – именно порцияэнергии и поэтому является своего рода частицей, или корпускулой, а с другой – порция именно энергиии поэтому является своего рода волной. Свет, по Эйнштейну, – это поток энергетических зерен, световых квантов или своеобразный фотонный дождь. Представление Эйнштейна о световых квантах помогло понять и наглядно представить явление фотоэффекта, сущность которого заключается в выбивании электронов из вещества под действием световых волн (каждый электрон вырывается одним фотоном). Все это убедительно подтвердило идею Эйнштейна, что свет ведет себя не только как волна, но и как поток корпускул. В опытах по дифракции и интерференции проявляются его волновые свойства, а при фотоэффекте – корпускулярные. Фотонная теория Эйнштейна относится к наиболее экспериментально подтвержденным физическим теориям.

Идея о квантах была перенесена и на представления об атоме, в результате чего появилась специфическая дисциплина – квантовая механика– наука, описывающая процессы, происходящие в микромире. Одним из ее основных утверждений является мысль о том, что микрообъекты (электроны, например) обладают, подобно свету, корпускулярными и волновыми свойствами, и только при учете этой двойственности можно более или менее успешно получить общую картину микромира. Квантовая механика – сравнительно молодая научная дисциплина, ей около ста лет. Появившись в XX в., она уже достигла значительных результатов, но дальнейшие ее успехи, по всей видимости, впереди. Современная наука ждет от нее ответов на многие сложные вопросы, связанные не только с микромиром, но также касающиеся макро– и мегамиров, ведь три эти области существуют не изолированно, а представляют собой единую физическую реальность.

Лилипуты пространства и времени. Элементарные частицы

После революционных открытий в физике на рубеже XIX–XX вв. было установлено, что атомы делимы и имеют сложное строение – состоят из более мелких частиц, взаимодействующих одна с другой, благодаря чему возможны разные внутриатомные изменения и превращения. Эти частицы были названы элементарными(от лат. elementarius– «первоначальный, простейший»). Сначала они считались (вместо атомов) последним и неделимым пределом вещества, основой всех материальных объектов или физических тел. Однако в скором времени ученые осознали условность, или относительность, термина «элементарный», потому что выяснилось, что элементарные частицы вовсе не неделимы и совсем не просты, а, наоборот, представляют собой сложные микрообъекты с определенной структурой (устройством или строением), то есть оказалось, что они никак не элементарны. Тем не менее исторически сложившееся название продолжает существовать.

Дальнейшее проникновение науки в глубины микромира было связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой из них в конце XIX в. был открыт электрон, а затем в первые десятилетия ХХ в. – фотон, протон, позитрон и нейтрон. В середине нынешнего столетия благодаря использованию современной экспериментальной техники было установлено существование более 300 видов элементарных частиц.

Основными их свойствами являются масса, заряд, среднее время жизни и участие в тех или иных типах взаимодействия. Существуют элементарные частицы, не имеющие массы. Это фотоны. Другие частицы по массе делятся на лептоны(от греч. leptos– «легкий»), мезоны(от греч. mesos– «средний») и барионы(от греч. barys– «тяжелый»). Все известные частицы обладают положительным, отрицательным или нулевым электрическим зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Не так давно была высказана гипотеза о существовании частиц с дробным электрическим зарядом (? или ? от заряда электрона). Они были названы кварками. Экспериментального подтверждения эта гипотеза пока не нашла. По времени жизни элементарные частицы делятся на стабильные и нестабильные. Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно они играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны. Они существуют около 10 -24– 10 -10с, после чего распадаются. Элементарные частицы со средним временем жизни 10 –23– 10 -22с называются резонансами. Вследствие краткого времени существования они распадаются еще до того, как успеют покинуть атом или атомное ядро. Эти частицы вычислены теоретически, обнаружить их в реальных экспериментах пока не удается.

Важной характеристикой элементарных частиц является тип взаимодействия. По современным представлениям в природе существуют четыре вида взаимодействия в порядке убывания интенсивности: сильное, электромагнитное, слабое и гравитационное. Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии не более ?10 -13см. Сильное взаимодействие очень прочно связывает частицы, в результате чего возникают атомные ядра, обладающие большой прочностью. Они являются весьма устойчивыми, и их трудно разрушить. Электромагнитное взаимодействие в тысячу раз слабее сильного, радиус его действия не ограничен. В результате этого взаимодействия электроны и атомные ядра соединяются в атомы, а атомы – в молекулы. Слабое взаимодействие ответственно за многие распады элементарных частиц. Оно действует на расстоянии от 10 –22до 10 –15см. Гравитационное взаимодействие – самое слабое, не учитываемое в теории элементарных частиц. В космических масштабах оно, наоборот, имеет решающее значение, так как представляет собой не что иное, как всемирное тяготение (взаимное притяжение огромных космических объектов – планет и звезд). Расстояние, на котором оно действует, неограниченно.

Если физические тела состоят из молекул, молекулы – из атомов, а атомы – из элементарных частиц, то логично было бы предположить, что элементарные частицы складываются, в свою очередь, из более мелких частиц. Однако такой вывод сделать невозможно, потому что на элементарном уровне существуют совершенно иные законы и все, к чему мы привыкли в макромире, там абсолютно не действует. Например, мы прекрасно знаем, что если какое-нибудь тело распадается на части, то любая часть будет и по размерам, и по массе меньше исходного целого тела. А если распадется элементарная частица, то вполне может быть, что продукты ее распада окажутся по размерам и по массе больше исходной распавшейся частицы. Это невероятно с позиций привычных представлений. Поэтому правильнее было бы говорить, что элементарные частицы не распадаются, а преобразуются или превращаются. Как это ни удивительно, но одна частица может превращаться в другую. Так же почти каждая элементарная частица может быть как бы «составной частью» любой другой элементарной частицы. Если частицы способны к превращениям и другим сложным изменениям, значит, они имеют какую-то внутреннюю структуру или устройство. Какое? На этот вопрос современная наука пока не в состоянии ответить. Единственное, что можно утверждать, – несомненное наличие у элементарных частиц этой структуры. Однако невозможно говорить, как мы увидели, что она состоит из еще более мелких частиц. Здесь мы сталкиваемся с неведомым пока уровнем существования материи, который лежит глубже сферы элементарных частиц и представляет собой нечто совершенно для нас новое, непривычное, необыкновенное, невыразимое в существующих ныне научных понятиях и не укладывающееся в современные научные представления и теории. Дальнейшее проникновение в глубинные тайны микромира, по всей видимости, будет делом науки XXI в.

Мириады далеких галактик. Освоение мегамира

Мегамир, как нам уже известно, – это область бескрайних космических просторов. Его главными объектами по современным представлениям являются звезды и планеты. Почти все вещество Вселенной (97 %) сосредоточено в звездах. Они представляют физические тела гигантских размеров. Для пояснения скажем, что диаметр Солнца, которое является небольшой звездой, равен приблизительно 1 400 000 км, в то время как диаметр Земли – это приблизительно 12 700 км, то есть Солнце превосходит Землю по диаметру примерно в 110 раз. А это значит, что по объему оно больше нашей планеты приблизительно в миллион раз. Звезды – это плазменные космические объекты. Плазмучасто называют четвертым состоянием вещества. Первые три – это твердое, жидкое и газообразное. Одним из различий между этими тремя состояниями является температура. Так, например, вода при одной температуре может быть льдом (то есть может находиться в твердом состоянии), при более высокой – водой (жидкое состояние), а еще при более высокой – паром (газообразное состояние). Под плазмой чаще всего понимается вещество с огромной температурой. Проще ее можно было бы назвать раскаленным газом. Таким образом, звезды – это очень горячие газовые тела колоссальных размеров.

В недрах звезд температура достигает 10 миллионов градусов. При таких условиях ни макротела, ни молекулы, ни даже атомы существовать не могут. Электроны по чти полностью или абсолютно все отделены от своих атомов. Лишившиеся электронов атомные ядра вступают во взаимодействие друг с другом, благодаря чему водород, имеющийся в изобилии в большинстве звезд, превращается при участии углерода в гелий. Эти и подобные ядерные превращения являются источником огромного количества энергии, уносимой излучением звезд. Те же силы, которые высвобождаются при взрыве водородной бомбы, образуют внутри звезды энергию, позволяющую ей излучать свет и тепло в течение миллионов и миллиардов лет. Звезды выступают в качестве своеобразной «кузницы атомов», или «плавильного тигля» Вселенной: основная эволюция (развитие) вещества в ней происходила и происходит в недрах звезд. Благодаря протекающим в них превращениям элементарных частиц образуются атомные ядра, а на окраинах и в окрестностях звезд, где температура намного ниже, возникают атомы, которые, как известно, взаимодействуя друг с другом, приводят к образованию молекул, а те в свою очередь складываются в макротела (твердые, жидкие и газообраз