N + позитрон + нейтрино + 2,71 МэВ (82 с)
15N +1Н → 12С +4Не +4,96 МэВ (1,1 х 105 лет)
В этом цикле ядерных реакций на одно получившееся ядро гелия выделяется (без учета нейтрино) 25 МэВ энергии.
Как видим, цикл состоит из четырех актов присоединения протона и двух бета-распадов. Углерод, участвующий в цикле, в конце его восстанавливается и не тратится, являясь, таким образом, «катализатором» реакции. Без углерода этот цикл просто не пойдет, как не шел он в самых первых звездах Вселенной, где углерода еще просто не было (напомню: он вырабатывается в «тройной гелиевой реакции» из ядер гелия в недрах красных гигантов и сверхгигантов при температурах свыше 100 млн К). Внутри Солнца, образовавшегося из космического вещества, уже обогащенного тяжелыми элементами, углерод, естественно, присутствовал с самого начала.
Обе эти группы реакций весьма чувствительным образом зависят от температуры. Скорость протон-протонной реакции в диапазоне температур 11–16 млн К зависит от температуры в четвертой степени, и это еще куда ни шло. Скорость же углеродно-азотного цикла зависит от температуры куда более сильно: степени этак в пятнадцатой. Поэтому в маломассивных красных карликах реакции углеродно-азотного цикла вообще не идут. И наоборот: в массивных горячих звездах главной последовательности идут, конечно, оба типа реакций, но главенствует углеродно-азотный цикл, а протон-протонная реакция идет к нему несущественным «довеском».
А как же Солнце? Лет 60 назад считалось, что единственным источником его излучения служит углеродно-азотный цикл. Теперь стало ясно, что он играет подчиненную роль, а основное энерговыделение в центре Солнца обеспечивает все же протон-протонная реакция. Для того чтобы углеродно-азотный цикл «развернулся вовсю», внутри Солнца просто не хватает температуры.
И это отрадно: в противном случае жизнь в Солнечной системе могла бы и не возникнуть вовсе, а если бы и возникла, то не на Земле, а подальше от чересчур мощного центрального светила, скажем, на Марсе, куда менее приспособленном для биологической эволюции…
В результате ядерных реакций энергия выделяется в виде гамма-квантов. Теперь даже дети знают, что гамма-излучение губительно для всего живого. И тем не менее мы живем не в подземных убежищах, а на воздух выходим чаще днем, чем ночью, и притом без свинцовых зонтиков. Дело в том, что по пути из глубины Солнца к поверхности кванты «худеют» – так, во всяком случае, сказано в некоторых научно-популярных книжках. Автор не знает, что такое «худой» или «толстый» квант, и категорически отказывается принимать эту метафору. Лучше сказать, что вместо одного высокоэнергичного кванта до поверхности Солнца доходит целая уйма гораздо менее энергичных квантов. Ведь какой-нибудь атом солнечного вещества, поглотив высокоэнергичный квант и перейдя в сильно возбужденное состояние, чаще всего избавляется от него не сразу, а постепенно, излучая менее энергичные кванты в соответствии с «нарезкой» своих квантовых уровней и мало-помалу возвращаясь в исходное состояние. Естественно, на этом теряется время. Не взаимодействующие с веществом нейтрино вырвутся из глубин Солнца на поверхность за какие-нибудь две секунды, а гамма-квант (имеется в виду не фотон, а именно порция энергии) будет долго «просачиваться» к поверхности Солнца, чтобы быть излученным в пространство в виде многих квантов оптического, инфракрасного, ультрафиолетового и мягкого рентгеновского диапазонов. Максимум излучения приходится на желтый участок видимого диапазона, что мы и наблюдаем. Время «просачивания» измеряется миллионами лет.
Но вот наконец кванты добрались до поверхности Солнца и были излучены. Правда, что такое поверхность Солнца – не вполне ясно. То, что мы видим, наблюдая Солнце сквозь темные очки, закопченное стекло или какой-нибудь фильтр, называется фотосферой. Это весьма условная граница собственно Солнца, над которой находятся слои солнечной атмосферы. Толщину фотосферы можно принять равной 100–200 км. Именно в фотосфере заканчивается конвективное движение солнечного вещества, здесь оно «сбрасывает» вовне избыток энергии в виде излучения, которым мы на Земле с удовольствием и пользуемся.
Вся поверхность фотосферы покрыта гранулами – нестойкими светлыми образованиями в целом округлых очертаний и флоккулами – волокнами разнообразной формы. Если смотреть на Солнце в телескоп сквозь фильтр, видно, что в промежутках между гранулами лежит более темный фон. Это значит, что гранулы ярче основного фона солнечной поверхности. Оно и понятно: ведь гранулы суть не что иное, как верхушки конвективных ячеек. Горячее вещество, всплывающее к поверхности, образует гранулу, в ее центре вещество поднимается и, достигнув поверхности, растекается к краям. Излучив энергию и охладившись, вещество вновь ныряет в глубину в промежутках между гранулами. Самая обыкновенная конвекция; нечто похожее можно наблюдать в кастрюле с поспевающей кашей или киселем. Разница лишь в масштабах: поперечник гранул составляет 400-1500 км, а их температура градусов на 200 выше средней по фотосфере.
Между прочим, в научно-популярных фильмах о Солнце под видом «кипения» солнечной поверхности нередко показывают кипящую рисовую кашу. Сходство весьма значительное. И не случайное.
Как минимум со времен Галилея известно, что на Солнце есть пятна (рис. 21 на цветной вклейке). «Как минимум» – потому что некоторые особенно крупные пятна, появляющиеся в годы максимумов солнечной активности, могут быть заметны и невооруженному глазу. Автору этой книжки случалось наблюдать такие пятна сквозь поглощающий фильтр, роль которого исполняла обыкновенная компьютерная дискета. Можно также использовать стопку фотонегативов или традиционное закопченное стекло. А иногда, особенно на восходе и закате, когда лучи Солнца падают очень наклонно и вынуждены пробираться сквозь значительную толщу воздуха, ослабляясь при этом, большое пятно на солнечном диске можно увидеть и невооруженным глазом. Если же вы хотите посмотреть на Солнце в телескоп, бинокль, подзорную трубу или какой-нибудь иной оптический прибор, собирающий свет в зрачок, то не делайте этого иначе, чем с апертурным (не окулярным!) фильтром. Старая жестокая шутка гласит, что в телескоп на Солнце можно посмотреть только дважды – один раз правым глазом и один раз левым. В этой шутке очень много правды: зрение после столь варварского эксперимента удается восстановить далеко не всегда.
Что такое солнечные пятна?
Движение заряженных частиц, естественно, создает магнитное поле. В Солнце полным-полно заряженных частиц, и они движутся. Во-первых, имеет место конвективное движение. Во-вторых, Солнце вращается вокруг своей оси, причем не как твердое тело, а зонально: скорость вращения на солнечном экваторе выше, чем в высоких солнечных широтах. Следовательно, Солнце должно иметь магнитное поле просто по определению. Так оно и есть, хотя его напряженность по сравнению с рядом более активно вращающихся звезд невелика: около 1 Э (эрстед). Из-за сложной картины движения заряженных частиц магнитное поле Солнца тоже сложное и мало похоже на простое дипольное магнитное поле Земли. Магнитные силовые линии выходят на поверхность Солнца в самых неожиданных и притом дрейфующих местах.
В таких местах и наблюдаются пятна (рис. 22 на цветной вклейке). В них напряженность магнитного поля в 8-10 раз выше средней. Сильное магнитное поле в пятнах проявляется в эффекте Зеемана – расщеплении спектральных линий на три компонента. Показательно, что солнечные пятна часто наблюдаются парами, между которыми протянут пучок силовых магнитных линий, выходящий из поверхности Солнца в одном пятне, образующий арку над солнечной поверхностью и скрывающийся в другом – почти таком же на вид – пятне (рис. 23 на цветной вклейке).
Пятна примерно на тысячу градусов холоднее окружающих их областей[14] и заметно вдавлены, что хорошо заметно визуально, если проследить за пятном, дрейфующим от центра к краю солнечного диска. Воронкообразная форма пятен была обнаружена еще в 1774 году шотландским астрономом А. Вилсоном. Пятна обрамлены флоккулами, которые близ края диска выглядят как факелы. Температура факелов, напротив, выше средней по фотосфере.
Факелы лучше видны близ края диска из-за эффекта потемнения солнечного диска к краю. Объяснение этого явления состоит в том, что в направлении на центр Солнца (перпендикулярно к поверхности) взор наблюдателя проникает глубже и видит более горячие слои, чем в направлении на край, где луч света, прежде чем попасть в глаз наблюдателя, проходит значительную толщу верхних, не таких горячих, слоев фотосферы.
Всем известен 11-летний (точнее, и, 1-летний) цикл солнечной активности. Открыл его в XIX веке немецкий астроном-любитель, аптекарь по профессии, Г. Швабе, потративший 43 года на поиски планеты, расположенной ближе к Солнцу, чем Меркурий, и заранее нареченной Вулканом. Поскольку даже наблюдения Меркурия не очень просты из-за близости планеты к Солнцу, так что Меркурий всегда виден низко над горизонтом в лучах вечерней либо утренней зари, Швабе здраво рассудил, что поиски Вулкана на небе сразу после захода (либо перед самым восходом) Солнца вряд ли приведут к успеху. Однако планета, чья орбита почти наверняка лежит недалеко от плоскости эклиптики, и вдобавок ближайшая к Солнцу, должна время от времени проходить по солнечному диску, как проходят по нему иногда Меркурий и Венера. И вот Швабе 43 года занимался наблюдением солнечных пятен, надеясь, что какое-нибудь из них окажется не пятном, а диском неизвестной планеты. Как сейчас заведомо известно, внутри орбиты Меркурия планет нет, и вообще там нет постоянно находящихся тел, чей диаметр превышал бы 5 км, так что поиски Швабе… так и хочется написать «ни к чему не привели». Но нет – они привели к открытию 11-летнего цикла, так что если неутомимый аптекарь надеялся оставить след в астрономии, то он своего добился даже без открытия Вулкана.