Удивительные числа Вселенной — страница 49 из 68

Алый Первоцвет

Эта проблема известна под названием проблемы иерархии. Почему существует такая колоссальная разница — иерархия — между массой бозона Хиггса, измеренной в ЦЕРН, и огромной массой, которую он должен поглощать в соответствии с квантовой теорией? Возможно, стоит почерпнуть вдохновение у электрона. В конце концов, были времена, когда у него тоже существовали проблемы с весом. Это было еще до развития квантовой теории, когда электрон казался просто заряженной частицей. Лучший способ вычислить его массу состоял в определении энергии, запасенной в его электрическом поле (помните, энергия и масса — одно и то же). Проблема в том, что обычно предполагалось, будто заряд электрона сохранен в одной точке, и поэтому, когда вы вычисляете энергию, хранящуюся в электрическом поле, вы получаете бесконечность. Звучит смехотворно. Если бы все электроны в вашем теле оказались бесконечно тяжелыми, вы не смогли бы двигаться. Но еще хуже то, что вы бы разорвали ткань пространства и времени.

Как мы уже видели, мы не можем ковыряться в пространстве-времени на бесконечно малых расстояниях. Может быть, в качестве альтернативы нам следует вообразить, что заряд электрона хранится внутри маленького шарика, радиус которого равен планковской длине — наименьшей длине, которая может сойти нам с рук. Это мало поможет: электрон оказывается таким же тяжелым, как мимарида, а это все равно слишком много. Если вы настаиваете на вычислении массы таким старомодным способом, вам придется представить заряд, размазанный по гораздо большему шару, имеющему диаметр около миллиардной доли миллиметра. Тогда вы получите правильный ответ — около 10–30 килограммов. Если вы хотите сделать шарик меньше, вам понадобится нечто новое: совершенно новая теория с новыми компонентами. Вам нужна теория квантовых полей с добавлением новой частицы — позитрона.


Рисунок, показывающий точечный электрон, который окружен облаком виртуальных позитрон-электронных пар. Это размазывает заряд и заставляет электрон казаться больше, чем он есть на самом деле


Как только в игру вступают позитроны, вы можете сжать электрон хоть до планковской длины. Он окружен облаком виртуальных позитронов и электронов; они словно размазывают его заряд по гораздо большему объему — как показано на рисунке. Как и в случае с бозоном Хиггса, эти виртуальные частицы прибавляют электрону массу, но эффект далеко не так серьезен. На самом деле, если бы мы вообразили электрон вообще без массы, ситуация была бы такой же, как и с фотоном: виртуальные частицы не смогли бы придавать ему массу. Как всегда, нас защищает симметрия. В реальности она имеет изъян: это только приблизительная симметрия. Вот почему электрон имеет некоторую массу, но не слишком большую. Если представить мир с более легкими электронами, этот изъян был бы меньше, а симметрия оказалась бы ближе к идеальной; если же электроны были безмассовыми, изъян исчез бы полностью.

Итак, что же это за хитроумная маленькая симметрия? Мы говорили, что в электродинамике мы можем свободно вращать внутренний диск, поворачивая математические объекты, которые используем для описания электронов и позитронов. Однако это слишком идеально для той симметрии, которую мы ищем. Помните, что нас интересует нечто с изъяном — совершенное только в воображаемом мире безмассовых электронов. И такая симметрия действительно существует. Она называется хиральной. Не беспокойтесь о терминах. По сути, это еще один вариант внутреннего диска, только он немного по-разному поворачивается для частиц, вращающихся по часовой стрелке или против нее. Это очень общий трюк, который работает не только с электронами. Хиральные симметрии предотвращают перекармливание любого фермиона калориями квантовой теории.

Это действительно здорово, но мало что дает для такой частицы, как бозон Хиггса. Дело в том, что у него нет спина, поэтому симметрии одинаковы — независимо от того, имеет ли он нулевую массу или массу мимариды. Хиггс не способен защитить себя, но, может, у него есть какой-нибудь ангел-хранитель? Нечто, его защищающее?


Да: хиггсино.

Представьте себе мир, в котором никто не одинок, где каждому подобран идеальный партнер. Это кажется фантастическим, но, возможно, происходит прямо у вас под носом, в микромире физики элементарных частиц. Я хочу, чтобы вы вообразили, что каждый бозон связан с совершенно новым фермионом, а каждый фермион — с совершенно новым бозоном. Иными словами, я хочу, чтобы вы удвоили количество полей. Это может показаться экстравагантным, но в основе лежит новая симметрия — так называемая суперсимметрия, — которая стремится к идеалу для каждого такого соответствия. Идея в том, что если какой-нибудь бозон и какой-нибудь фермион составляют такую пару, то для надлежащего функционирования у них должны быть определенные общие характеристики, включая массу и заряд. Это семейство новых частиц получило название суперчастицы.

Как это поможет хиггсону? Хиггсон — это бозон, поэтому он соединяется с новым фермионом, известным как хиггсино. Чтобы гарантировать идеальность совпадения, наша суперновая суперсимметрия требует, чтобы хиггсон и хиггсино имели абсолютно одинаковую массу. Ну разве это не прекрасно? Масса бозона Хиггса теперь привязана к массе хиггсино. Хиггсино — это фермион, поэтому его масса защищена приблизительной хиральной симметрией, как и масса электрона. Он никогда не начнет потреблять слишком много квантовых калорий. Хиггсино никогда не станет таким же тяжелым, как мимарида, — и ровно так же не станет тяжелым и его партнер, бозон Хиггса. Хиггсон нашел своего ангела-хранителя[134].

Мы можем считать суперсимметрию (или «сьюзи», как ее ласково называют из-за стандартного сокращения SUSY) наиболее полной симметрией пространства и времени и красотой, превосходящей всякую иную. Правда, есть одна загвоздка: такой красоты никто никогда не видел.

Мы знаем, что в мире сьюзи электрон соединяется с суперчастицей: новым бозоном, называемым сэлектроном[135]. Предполагается, что он и электрон имеют одинаковую массу и одинаковый электрический заряд. Но хотя мы видели множество электронов, никто никогда не видел сэлектрон. Это может означать только то, что сьюзи не совсем идеальна. В нашем повседневном мире она сломана или скрыта, а проявляется только тогда, когда мы вглядываемся в физику в самых мелких масштабах. Иными словами, когда мы сталкиваем объекты с очень, очень высокими энергиями. Такая нарушенная симметрия приводит к тому, что сэлектрон, хиггсино и все прочие суперчастицы оказываются намного тяжелее, чем были бы в противном случае. И чем сильнее нарушается суперсимметрия, тем тяжелее они становятся.

Чтобы обнаружить сьюзи, нам нужно искать эти суперчастицы, а значит, для их создания требуется достаточно много энергии. Прямо сейчас, глубоко под горами в ЦЕРН, в Большом адронном коллайдере почти со скоростью света летают протоны. Когда они врезаются друг в друга, то воссоздают крики младенческой Вселенной. Энергия при каждом лобовом столкновении составляет около 10 ТэВ — то, что вы получите, когда комар столкнется с высокоскоростным поездом. Я всегда считал это сравнение несколько разочаровывающим, но помните, что в Большом адронном коллайдере вся эта энергия исходит от столкновения всего лишь двух невообразимо крохотных протонов. Чтобы придать описанному событию ту влиятельность, которой оно действительно заслуживает, подумайте так: если все протоны в вашем теле столкнутся подобным образом, то они высвободят примерно в 20 000 раз больше энергии, чем дало извержение вулкана Кракатау в 1883 году.

Когда дело касается сьюзи, важно то, что 10 ТэВ примерно в 10 млн раз больше массы электрона и примерно в 100 раз больше массы бозона Хиггса. Однако мы никогда не получали намеков на существование ни сэлектрона, ни хиггсино, ни любой другой суперчастицы. В простейших моделях это может означать только одно: суперчастицы слишком тяжелы, чтобы возникать при таких столкновениях. Это тревожит. Помните, мы хотим доказать, что хиггсино — ангел-хранитель бозона Хиггса, а их массы связаны. Однако эксперименты в ЦЕРН, похоже, предполагают, что хиггсино минимум в 100 раз тяжелее, чем нам хотелось бы. Возможно, бозон Хиггса не обязан быть таким же тяжелым, как мимарида, но в этих простых моделях он должен оказаться минимум в 100 раз тяжелее, чем на самом деле. Это, безусловно, серьезное улучшение, но все же несколько неестественное.

Все очень надеялись, что ЦЕРН обнаружит сьюзи. Достаточно было со смаком столкнуть два протона. Дело не только в том, что суперсимметрия сохраняла естественность и решала головоломку с неправильной массой Хиггса. Она также решала проблему темной материи, предложив в качестве идеального кандидата легчайшую суперчастицу; казалось, что это изящно указывает на дальнейшее объединение, на общее происхождение трех из четырех фундаментальных взаимодействий. При таком хет-трике впечатляющих успехов сьюзи просто обязана была оказаться правильной. Однако ЦЕРН этого не увидел. Ученые начали сомневаться в мотивации для суперсимметрии. Стали искать темную материю в других местах. И иначе думать об объединении.


А сейчас есть даже те, кто готов отказаться от естественности.

Но не все. Во всяком случае, пока. Наука приучила нас искать причины всех неожиданностей. Числа редко бывают слишком большими или слишком маленькими. Поэтому, когда кто-то говорит, что масса бозона Хиггса составляет 0,0000000000000001 от ожидаемой, большинство физиков стремятся найти этому объяснение.

Мы многое перепробовали, но истину пока не нашли. Пробовали дополнительные измерения. И сьюзи. Даже пытались разбить бозон Хиггса на крошечные кусочки. Все это очень хитроумные способы сохранить естественность, но природу это, похоже, не волнует. На данный момент бозон Хиггса — по-прежнему выигравший гонку аутсайдер, на которого ставили десять миллионов миллиардов к одному, и никто не знает почему.