т.
Но реальна ли физически эта энергия вакуума?
Геккон, бегающий по потолку, сказал бы «да». Предполагается, что его волшебная способность ходить по стенам зависит от изменений энергии вакуума и силы квантового вакуума. Оказывается, энергия вакуума зависит от формы его окружения. Мы знаем, что энергия нулевой точки исходит от ряби виртуальных частиц, которые то появляются, то исчезают. Однако важно, что эта рябь зависит от размера и формы края вакуума. Аналогичный эффект вы наблюдаете для волн на водоеме: они зависят от формы бассейна, озера или даже океана. Если вы измените край вакуума, вы трансформируете и эту виртуальную рябь, а это может изменить энергию нулевой точки. Это означает, что вакуум будет толкать и тянуть окружающие его стены, пытаясь изменить рябь и понизить уровень энергии. В результате возникает так называемая сила Казимира, названная в честь голландского физика Хендрика Казимира — ученика Эренфеста. Когда стенки вакуума далеко друг от друга, эта сила мала, но если они микроскопически близки, то ее можно измерить. (Именно это в 1997 году сделали Стив Ламоро и его группа в Лос-Аламосской национальной лаборатории.) Аналогичным образом изменения энергии нулевой точки могут привести к возникновению так называемых сил Ван-дер-Ваальса между атомами и молекулами. Это возвращает нас к геккону. Некоторые биологи считают, что гекконы для прилипания к потолку используют вандерваальсовы силы — благодаря нулевой энергии, изменяющейся в вакууме между микроскопическими выступами на подошвах их ног.
Такие поддающиеся измерению эффекты дают нам уверенность в том, что теория нулевых энергий верна, но истина состоит в том, что измеряются только локальные изменения — флуктуации нулевой энергии, которые происходят всякий раз, когда мы окружаем кусочек пустого пространства стенкой из атомов и молекул на ноге геккона. Эксперименты, подобные опытам Ламоро в Лос-Аламосе, очень мало говорят нам о скрывающемся чудовище — огромном резервуаре энергии вакуума, лежащей в основе всей Вселенной. Это энергия нулевой точки, которую вы все еще ожидаете найти, когда уберете все стенки и полностью опорожните Вселенную. Как мы видели, этот монстр должен быть огромным. Он должен уничтожить Вселенную.
Космологическая история нулевой энергии началась независимо от ее изучения в квантовой механике. Для начала нам придется вернуться в первые месяцы 1917 года — за восемь лет до того, как Гейзенберг обнаружил ее квантовое происхождение. В тот момент Альберт Эйнштейн все еще оставался ярым противником энергии нулевой точки и не был склонен особо о ней задумываться. Однако он размышлял о гравитации и влиянии его новой замечательной теории на Вселенную в целом.
Он начал с загадки — проблемы бесконечного пространства. Может ли она вообще иметь реальный смысл? Чтобы избежать этой проблемы, Эйнштейн предпочитал представлять Вселенную как огромную сферу, подобную поверхности шара: очень большую, но все же конечную. Уравнения общей теории относительности связывают форму и размер Вселенной с содержащейся в ней материей. Эйнштейн увидел, что в самых больших масштабах внутренняя материя вечно толкает и притягивает его сферическую Вселенную. Покоя никогда не будет. Эйнштейну это совсем не нравилось. Идея Вселенной, эволюционирующей во времени, вызывала у него отвращение. Его интуиция требовала неизменного мира, без начала и конца, но уравнения отказывались подыгрывать. Нужно было что-то исправить.
Эйнштейн заметил, что он может остановить беспокоящую его эволюцию с помощью нового компонента — космологической постоянной, пронизывающей все пространство и время. Ученый вытащил эту космологическую постоянную из своего воображения: он понятия не имел, что эта константа может быть связана с нулевой энергией Вселенной. Но когда Эйнштейн вообразил ее, он устроил все именно так: космологическая постоянная аккуратно уравновешивает материю и кривизну пространства, так что Вселенная остается неподвижной. Это было шаткое перемирие между космическими гигантами на поле битвы пространства-времени. Оно не могло продлиться долго.
Первый тревожный сигнал для Эйнштейна появился в том же 1917 году, когда его резко раскритиковал голландский астроном Виллем де Ситтер. Де Ситтер подверг сомнению многие из базовых предположений Эйнштейна и показал, что существуют жизнеспособные альтернативы эйнштейновской Вселенной — как экспериментально, так и математически. Он вообразил Вселенную, которая была настолько разреженной, что ее можно было считать совсем свободной от материи: оставался только член с космологической постоянной. Это дало ему альтернативное космическое решение: Вселенную, полностью сформированную этим космологическим членом. Эйнштейн не верил, что так можно описать нашу Вселенную, — как раз потому, что в этой теории не играли никакой роли обычные материальные объекты вроде звезд и планет. Еще хуже (по крайней мере, с точки зрения Эйнштейна) было вот что: если вы добавляли несколько звезд и планет, то они, как показал астроном Артур Эддингтон, начинали разлетаться, ускоряясь по мере расширения пространства между ними. Де Ситтер и Эйнштейн очень уважали друг друга, и, хотя они активно обсуждали этот вопрос, нет никаких подтверждений, что Эйнштейн когда-либо согласился с реальностью решения де Ситтера. Мир Эйнштейна и мир де Ситтера стали ведущими космологическими моделями того времени.
Александр Фридман не собирался принимать чью-либо сторону. В 1922 году этот молодой российский физик решил более серьезно рассмотреть возможность эволюции Вселенной и нашел совершенно новое семейство решений. В мире Фридмана не было космологической постоянной. Расширение Вселенной было вызвано материей, но при этом расширение замедлялось по мере того, как материя становилась все более разреженной. Сравните это с двумя предыдущими моделями. В мире Эйнштейна Вселенная была неподвижна; в мире де Ситтера расширение присутствовало, однако оно целиком управлялось космологической постоянной, которая ускоряла процесс. Если не считать нескольких всплесков ускорения в самые ранние и самые поздние времена, оказывается, что космология Фридмана с замедляющимся расширением — лучшая модель нашей Вселенной на протяжении большей части ее истории.
Сначала Эйнштейн отверг статью Фридмана, решив, что в ней есть проблемы с математикой. Когда стало ясно, что работа математически верна, ученый начал осознавать ее важность и в результате изменил свое отношение к космологической постоянной, которую ввел пятью годами ранее. В открытке, отправленной Герману Вейлю в 1923 году, Эйнштейн писал: «Если не существует никакого квазистатического мира, то долой космологический член». Иными словами, если вы принимаете идею расширяющейся Вселенной, то нет смысла пачкать общую теорию относительности исправлением 1917 года: нет смысла вводить космологическую постоянную. Такая точка зрения будет доминировать в следующие семьдесят лет, поскольку все свидетельства указывали на Вселенную, которая расширяется с замедлением, как и предполагал Фридман. Как мы увидим, космологическая постоянная не возвращалась до 1990-х, когда астрономы начали обнаруживать намеки на то, что на последних этапах космической истории происходит ускорение.
Фридман не увидел триумфа своей модели. Летом 1925 года он съел грушу на железнодорожной станции, когда возвращался домой после медового месяца в Крыму. Плохо вымытый плод, возможно, кишел бактериями. После возвращения в Ленинград Фридман почувствовал себя плохо, ему диагностировали брюшной тиф, и через две недели он умер.
Примерно в это же время свои идеи начал развивать аббат Жорж Леметр. Выросший в состоятельной католической семье в бельгийском городе Шарлеруа, Леметр решил стать священником, когда ему было всего девять лет. В том же месяце он решил стать еще и ученым. «Видите ли, меня интересовала истина, — говорил он газете The New York Times, — как с точки зрения спасения, так и с точки зрения научной достоверности». Он никогда не видел противоречий между этими сторонами своей жизни.
Леметр не знал о трудах Фридмана, но читал публикации Весто Слайфера — американского астронома, который наблюдал тусклые световые спирали, известные как спиральные туманности. Слайфер заметил, что эти спирали удаляются от нас, и Леметр правильно приписал это явление расширению Вселенной. Приблизительные оценки давали огромное расстояние до этих туманностей, и некоторые астрономы предположили, что на самом деле они представляют собой огромные звездные системы, состоящие из миллионов, а то и миллиардов звезд. И ученые оказались правы. Эдвин Хаббл смог вглядеться и опознать отдельные звезды. Спиральные туманности Слайфера — то, что мы сейчас называем галактиками.
Леметр занялся решением уравнений для расширяющейся Вселенной, но его работа Эйнштейна не впечатлила. Леметр включил в свою модель все: планеты, звезды и даже космологическую постоянную. Для Эйнштейна это казалось излишеством: он не видел никакой ценности в космологической постоянной, если мир расширяется. Его интересовал только вопрос, как остановить расширение и сделать Вселенную статичной. Когда бельгиец разыскал его на Сольвеевском конгрессе в 1927 году, чтобы обсудить статью, Эйнштейн не стал проявлять снисхождение, заметив: «Ваши расчеты верны, но физическая идея отвратительна».
Эддингтон отнесся к идее более благосклонно. Он заметил, что работа Леметра положила конец статической модели Вселенной Эйнштейна. Хотя Леметр не утверждал прямо, его расчеты подразумевали, что эйнштейновский мир нестабилен. Он слишком полагался на шаткое перемирие между материей и космологической постоянной. Если нарушить это перемирие, изменив — даже чуть-чуть — плотность материи, Вселенная быстро превратится во что-то другое. И одно можно сказать наверняка: она никогда не будет статичной.
К концу 1920-х Хаббл смог точно измерить расстояние до галактик Слайфера. Сравнение скоростей их удаления подтвердило расширяющуюся модель Вселенной — в соответствии с космологиями, разработанными Фридманом и Леметром, и в противоречие с первоначальной моделью Эйнштейна 1917 года. В этот момент Эйнштейн начал активнее отвергать космологическую постоянную. Вселенная оказалась не статичной, поэтому в этой константе просто не было необходимости.