Удивительные числа Вселенной. Путешествие за грань воображения — страница 44 из 68

quack («шарлатан, обманщик»). В следующий понедельник взволнованный Гелл-Манн подошел к нему и сказал, что нашел идеальное слово, увидев в романе Джеймса Джойса «Поминки по Финнегану» фразу: «Три кварка для мастера Марка».


Так что не предложенный Фейнманом quack, а quark.

Возможно, Гелл-Манн Фейнману и не нравился, однако нет сомнений, что Фейнман чрезвычайно его уважал. В 2010 году мне выпала честь побывать на конференции в Сингапуре, посвященной восьмидесятилетию Гелл-Манна. Она собрала множество звезд, – во всяком случае, так казалось фанату физики вроде меня. Помимо Гелл-Манна, присутствовали еще три лауреата Нобелевской премии: Герард Хоофт, с которым мы познакомились в главе «TREE(3)», ученик Гелл-Манна Кеннет Вильсон и китайский физик Янг Чжэньнин, также известный под именем Фрэнк Янг (которое он взял в честь американского ученого Бенджамина Франклина). Там был и Джордж Цвейг. И все же, хотя Гелл-Манна окружало множество самых острых умов из новейшей истории физики, он выделялся на их фоне. Он излучал такие уверенность и интеллект, которых я никогда не видел ни до, ни после. Признаюсь, я был немного одержим знаменитостями. Гелл-Манн на тот момент был последним представителем золотого поколения физиков. Человеком, который препирался с Фейнманом в Калифорнийском технологическом институте, который в сорок лет стал лауреатом Нобелевской премии, а в последующие годы легко мог получить еще две или три. Его интеллектуальные способности намного превышали способности обычных людей. К девяти годам он запомнил Британскую энциклопедию, а во взрослом возрасте свободно говорил по крайней мере на тринадцати языках.

Кварки Гелл-Манна – строительные блоки для всей материи наряду с другим семейством фермионов, известных как лептоны. К лептонам относятся электрон и его более тяжелые собратья, мюон и тау-лептон, а также восхитительно названные нейтрино, с которыми мы встретимся чуть позже, когда будем говорить о слабом ядерном взаимодействии. Хотя лептоны и кварки имеют много общего, у них есть очень важное различие. Лептоны невосприимчивы к сильному ядерному взаимодействию. Они вообще не могут в нем участвовать. А вот кварки находятся в его плену. Сильное взаимодействие связывает их вместе, навеки заключая внутри адронов. В отличие от лептонов, кварки никогда не могут оказаться свободными. Это проклятие конфайнмента[114]. Конфайнмент означает, что вы никогда не найдете кварк, блуждающий в одиночестве по космосу. Он всегда будет прикован цепями к другим кваркам в клетке протона, нейтрона или какого-либо иного адрона. Эти цепи состоят из глюонов – частиц, переносящих сильное взаимодействие и лишающих кварки свободы.

Глюоны – тюремщики не только для кварков, они также лишают свободы друг друга. Они притягивают и другие глюоны, и кварки, стягивая силовые линии, и в итоге конфайнмент удерживает их всех. Вот почему мы не видим сильного взаимодействия в нашей макроскопической жизни. Несмотря на то что глюон не имеет массы, конфайнмент удерживает эту силу внутри ядра. Пока мы еще не понимаем процесс полностью: эта проблема – одна из семи задач тысячелетия, установленных Математическим институтом Клэя[115]. За ее решение назначена премия в миллион долларов, так что если вы сможете справиться с нею, то станете богатым.

Разумеется, именно Гелл-Манн и его сотрудники в начале 1970-х собрали воедино известные человечеству факты. Поскольку атрибут кварков и глюонов назвали цветом, эта теория стала известна как квантовая хромодинамика, для краткости – КХД. Ее семена были посажены несколько десятилетий назад, когда Фрэнк Янг (один из делегатов на конференции в Сингапуре) и его американский коллега Роберт Миллс придумали причудливую версию электромагнетизма, которая сейчас называется теорией Янга – Миллса. Эта новая теория содержала собственную промежуточную частицу, новый калибровочный бозон, который можно было считать более сложным родственником фотона. Когда Янг делал доклад в Принстоне, Паули спросил его о массе этой предполагаемой новой частицы. Для Паули этот вопрос имел решающее значение, поскольку такой частицы никогда не видели. Янг сказал, что не знает ответа. Паули настаивал, и Янг был настолько ошеломлен этой яростной атакой, что прекратил доклад и сел в первый ряд. Ситуация была крайне неловкой. После вмешательства Оппенгеймера Фрэнк продолжил выступление, а Паули больше не вмешивался, но на следующий день отправил Янгу записку с сожалениями, что не удалось поговорить после семинара. Сейчас мы знаем ответ на вопрос Паули. Благодаря задействованным симметриям переносчик Янга вообще не имеет массы. Немного подкорректировав симметрии, но не массу, Гелл-Манн отождествил эту новую частицу с глюоном – цепью, которая связывает вместе протоны, нейтроны и ядро атома в целом. Это был переносчик сильного взаимодействия.


Слабое ядерное взаимодействие

У слабого ядерного взаимодействия незавидное место рядом с другими, у которых гораздо более впечатляющие названия: гравитационное, сильное, электромагнитное. Ирония судьбы в том, что слабое взаимодействие как раз не самое слабое из четырех фундаментальных взаимодействий. Это бесчестье выпало гравитации, которая более чем в триллион триллионов раз слабее[116].

Конечно, слабое взаимодействие не так сильно, как сильное ядерное взаимодействие или даже электромагнетизм, но пусть это вас не смущает. Оно – солнечный свет субатомного мира. Причем в буквальном смысле: именно слабое взаимодействие отвечает за животворный свет нашего светила. Когда два ядра атомов водорода соединяются внутри солнечного ядра, есть шанс, что один из этих двух протонов превратится в нейтрон, что позволит появиться дейтрону – ядру дейтерия, тяжелой формы водорода. Это первый шаг в процессе ядерного синтеза, который позволяет Солнцу генерировать столько энергии. Как мы вскоре увидим, именно слабое взаимодействие позволяет протонам и нейтронам превращаться друг в друга. Это сила радиоактивности.

Как часто бывает в физике, все началось с головоломки. Накануне Первой мировой войны молодой британский физик по имени Джеймс Чедвик отправился в Берлин, чтобы поработать с Хансом Гейгером. Гейгер недавно разработал свой знаменитый счетчик, и Чедвик использовал его для исследования спектра излучения, которое появляется в результате ядерного процесса, названного бета-распадом. В то время считалось, что бета-распад происходит, когда тяжелое атомное ядро выбрасывает электрон. Как и все в квантовом мире, энергия ядер до и после распада должна принимать весьма точные значения. Поскольку все верили, что энергия сохраняется, то же должно было происходить и с электронами, из которых состоит излучение. Однако дела обстояли иначе. Чедвик заметил, что электроны обладают произвольным количеством энергии, – ее распределение было непрерывным. Казалось, бета-распад противоречит идее, что энергия не создается и не уничтожается. Полученный результат привел физику в смятение. Даже великий Нильс Бор был готов отказаться от закона сохранения энергии, отбросив вывод, сделанный задолго до того Юлиусом Майером, который изучал кровь моряков своего судна. Когда разразилась война, застрявший в Германии Чедвик был в лагере для гражданских интернированных лиц. Нужно отдать должное немецким охранникам: ему позволили устроить лабораторию и снабдили его необходимой для экспериментов радиоактивной зубной пастой[117].

Решение головоломки Чедвика дал другой немец. Оно пришло в виде необычного письма, отправленного Паули участникам конференции, которая состоялась в Тюбингене в декабре 1930 года. Паули не смог присутствовать лично, поскольку предпочел посетить бал в Цюрихе. Однако его виртуальный вклад обеспечил этой конференции место в истории физики. Паули никогда не довольствовался скучными вступлениями и на этот раз начал свое письмо так: «Уважаемые радиоактивные дамы и господа». Далее он высказал замечательную догадку: проблему бета-распада можно решить с помощью крохотных нейтронов. Суть в том, что они выбрасываются в виде излучения вместе с электронами и уносят с собой недостающую энергию в эксперименте Чедвика. Нейтроны Паули – вовсе не те частицы, которые, как известно, находятся вместе с протонами в ядре атома. Нейтроны ядра Чедвик откроет через год-два, и они окажутся намного тяжелее, чем частица, предложенная Паули. Последнюю мы теперь называем нейтрино – нечто маленькое, легкое и электрически нейтральное[118].

Когда в 1933 году Паули выступил с докладом о своих маленьких частицах на конференции в Брюсселе, это произвело глубокое впечатление на отца фермионов Энрико Ферми. Ферми вернулся в Рим, полный решимости собрать воедино все детали идеи Паули. Он понял, что, когда ядро атома при бета-распаде выбрасывало электрон, последний вовсе не находился в ядре в готовом виде. Происходило нечто совершенно новое. Нейтрон внутри ядра распадался под действием новой неизвестной силы, сейчас мы ее называем слабым взаимодействием. Продуктом этого распада оказывались протон, электрон и одно из нейтрино Паули. Строго говоря, это антинейтрино, но не будем особо беспокоиться об этом. Не стоит думать, что нейтрон состоит из протона, электрона и нейтрино, а затем распадается. Он буквально превращается в них, как субатомный оборотень. Как только такое преобразование завершено, появившийся протон увеличивает атомный номер ядра, перемещая его на одну позицию вверх в периодической таблице, а электрон и нейтрино выбрасываются в виде излучения. Новая сила Ферми, ответственная за всю эту радиоактивную драму, действует на бесконечно малом расстоянии, будто переносчик – бесконечно тяжелая частица. Такие силы мы сейчас называем контактными: в одной точке в один момент времени взаимодействуют нейтрон, протон, электрон и нейтрино. Когда Ферми отправил свою работу в журнал Nature, ее отвергли как слишком далекую от физической реальности. Позже журнал признал, что отказ стал одной из величайших редакционных ошибок в его истории. Ферми тяжело воспринял отвод и решил, что ему надо на некоторое время отойти от теоретической физики. Он сосредоточился на экспериментах и в 1938 году получил Нобелевскую премию. Ферми разработал метод замедления нейтронов, и в результате они стали более точными снарядами для расщепления атомных ядер. Он осознал огромный потенциал извлечения энергии из атома и проложил путь к ядерной энергетике в промышленных масштабах.