Нейтрино трудно обнаружить. Проблема в том, что у них почти нет массы и нет заряда, поэтому они практически ни с чем не взаимодействуют. Это и к лучшему, поскольку в данный момент через ваше тело каждую секунду проходит примерно 100 трлн нейтрино. Благодаря этой способности оставаться инкогнито нейтрино экспериментально открыли только в 1956 году – спустя двадцать с лишним лет после первоначальной гипотезы Паули и Ферми. Когда Паули получил телеграмму с извещением об открытии, он ответил: «Спасибо за сообщение. Все приходит к тому, кто умеет ждать».
Через шесть месяцев после открытия нейтрино мир физики был потрясен еще более замечательным экспериментом. Руководила им Ву Цзяньсюн, которую обычно называли мадам Ву. Она выросла в китайском городке Люхэ, недалеко от устья Янцзы, в семье учителя и инженера, которые активно поощряли ее стремление к науке. В этой прогрессивной среде она получила хорошее образование. Позже она сказала в интервью журналу Newsweek: «В китайском обществе женщин оценивают исключительно по их достоинствам. Мужчины поощряют их преуспевание, и им не приходится ради успеха изменять свои женские качества». Но когда она в 1936 году приехала в США, чтобы поступить в докторантуру в Мичиганском университете, она столкнулась совсем с иной ситуацией. Студенткам не разрешалось входить в новый студенческий центр через парадный вход – им приходилось пробираться через боковой. Ву была так потрясена сексизмом, что отправилась на Западное побережье, в Калифорнийский университет в Беркли, где отношение к женщинам было более либеральным. Но даже там у нее возникали сложности, поскольку, по мнению других людей, ученые должны выглядеть не так. Ву была хорошенькой и миниатюрной, газета Oakland Tribune сообщала, что она больше похожа на актрису, чем на ученого. Но, несмотря на все предубеждения, она заработала себе серьезную репутацию физика-ядерщика. Вскоре ее стали сравнивать с Марией Кюри, польским химиком, которая открыла первые секреты радиоактивности; с той самой женщиной, которой Ву восхищалась больше, чем кем-либо другим.
К середине 1950-х Ву проводила эксперименты с бета-распадом в своей низкотемпературной лаборатории в Вашингтоне. Двое ее китайских коллег, теоретики Фрэнк Янг и Ли Чжэндао, предложили ей поискать нечто совершенно неожиданное: спросить Вселенную, есть ли в ней разница между левым и правым. Представьте, что Вселенная отразилась в зеркале, где мы меняем местами лево и право[119]. Окажется ли там физика иной? В то время большинство ученых полагало, что нет. Электрон по-прежнему будет притягиваться к протону и отталкиваться от других электронов. Земля по-прежнему будет вращаться по эллиптической орбите вокруг Солнца. Смерть и налоги по-прежнему будут существовать[120]. Но когда Ву провела эксперимент, предложенный Янгом и Ли, она заметила, что при бета-распаде всегда вылетают левые электроны. Если смотреть в направлении движения, то левый электрон – тот, который кажется вращающимся против часовой стрелки, а правый – вращающимся по часовой стрелке[121]. Результат Ву доказал, что наша Вселенная может установить разницу между левым и правым, между движением по часовой стрелке и против нее. Он заявил: если вы войдете в зеркальный мир, физика изменится. Изменится не все: гравитация, электромагнетизм и сильное взаимодействие останутся прежними. Но слабое взаимодействие начнет вести себя иначе.
За это открытие Янг и Ли вскоре получили Нобелевскую премию, однако вклад Ву по необъяснимым причинам остался обойден вниманием. Оба теоретика осознавали нелепость такого решения и неоднократно номинировали ее на премию в дальнейшем, но безуспешно[122]. После новаторского эксперимента Ву левое и правое стали иметь значение, а это означало, что требовалось обратить внимание на теорию Ферми. Гарвардский физик Роберт Маршак и его индийский студент Джордж Сударшан придумали универсальный рецепт для слабого взаимодействия, известный под названием V-A теории[123]. По духу она была близка к идее Ферми, но показывала разницу относительно зеркального отражения. Теория одинаково хорошо работала как для распадов с участием электронов, так и для распадов с участием их более тяжелых собратьев – мюонов. Хотя нет сомнений в том, что первыми эту теорию создали Маршак и Сударшан, признание по большей части ушло к эксцентричной паре из Калифорнийского технологического института. Фейнман и Гелл-Манн разрабатывали схожие идеи примерно в то же время, а опубликовали их раньше. Они также были немного шумнее друзей из Гарварда. Это соперничество несколько ухудшило отношения между ними. После того как Фейнман сделал характерный для него стильный доклад о своей работе в Американском физическом обществе, Маршак схватил микрофон. «Я был первым! – кричал он. – Я был первым!» Фейнман невозмутимо ответил: «Я знаю только, что я был последним»[124].
Так же как в теории Ферми, в V-A теории силы действуют на бесконечно малых расстояниях, частицы соприкасаются в одной точке. Но мы знаем, что на самом деле взаимодействия работают не так: всегда есть какой-то переносчик. Почему же эксперимент подтвердил V-A теорию? Представьте голливудскую модницу, посылающую другу воздушный поцелуй; при этом губы не соприкасаются. Если эта модница предпочитает воздушные поцелуи на совсем близком расстоянии, издалека может показаться, что касание есть. Аналогичным образом возникает и V-A теория. Может показаться, что частицы соприкасаются, но лишь потому, что переносчик действует на очень малом расстоянии: он слишком тяжелый.
Так что же это за тяжеловес, переносящий взаимодействие? Оказывается, существуют три частицы, которые могут переносить слабое взаимодействие, все они имеют большую массу и единичный спин. Два из них – W-бозоны – еще до появления V-A теории идентифицировал американский физик Джулиан Швингер. Он принадлежал к тому же поколению, что и Фейнман, и этих гигантов теоретической физики часто сравнивали. Яркий Фейнман руководствовался интуицией, Швингер отличался осторожностью и изощренностью. В теории Ферми нейтрон превращается в протон, выбрасывая электрон и антинейтрино. Швингер хотел в этот процесс втиснуть свой новый бозон, как в игре «Третий лишний», чтобы остановить «поцелуй» четырех частиц. Иными словами, ему хотелось, чтобы нейтрон превращался в протон, испустив сначала отрицательно заряженный W-бозон, как показано на рисунке ниже. В других процессах участвовал положительно заряженный W-бозон, так что всего у физика имелось два W-бозона.
Изображение распада нейтрона. Слева вы видите схему Ферми, когда нейтрон одновременно распадается на три частицы. Справа – вариант Швингера, когда в середину процесса втиснут W-бозон
Казалось, что электромагнетизм и слабое взаимодействие танцуют в одном зале, хотя и совершают несколько разные шаги. В некотором смысле это танец электрического заряда. С одной стороны, у вас есть электромагнитная сила, перемещающая заряды в пространстве: электроны отталкивают электроны и притягивают протоны. С другой – у вас имеется слабое взаимодействие, способное изменять электрический заряд; оно может превращать электрически нейтральный нейтрон в положительно заряженный протон. Это также означает, что слабое взаимодействие переносится частицами, имеющими собственный электрический заряд и ощущающими электромагнитную силу! Может быть, электромагнетизм и слабое взаимодействие – разные стороны одной медали? Можно ли упаковать W-бозоны и фотон в один сверток, взяв две фундаментальные силы природы и объединив их?
Швингер считал именно так. Он попытался сшить две силы вместе. Это напоминало попытку художников создавать орнаменты на стенах Альгамбры, хотя, как мы видели в начале предыдущей главы, симметрии – дело хитрое. Чтобы получить узор, вы не можете соединять все что заблагорассудится. Вот почему на стенах и полах древних исламских дворцов появляется всего семнадцать орнаментов. И именно поэтому Швингер не смог сшить вместе фотон и пару W-бозонов. В конце концов, дисбаланс был слишком велик: электрически нейтральным оказался один бозон (фотон), а заряд несли два. Чтобы получился орнамент – и сохранялась симметрия, – требовался еще один нейтральный бозон. Эту частицу мы сейчас называем Z-бозоном. Нехватку этого компонента понял парень из Бронкса Шелдон Глэшоу. Он был аспирантом Швингера, хотя из комментариев к его статье видно, что Шелдона вдохновляли также беседы с Гелл-Манном.
Все сходилось – в буквальном смысле. Слабое взаимодействие и электромагнетизм сливались в единую сверхсилу, и это взаимодействие переносили четыре бозона: фотон, два W-бозона и Z-бозон. Фотон отвечал за электромагнетизм, а W– и Z-бозоны – за слабое взаимодействие. Как и в случае с сильным взаимодействием, базовая структура была примерно такой же, как та, которую Янг и Миллс предложили десятилетием ранее (и которая так сильно расстроила Паули на семинаре в Принстоне). Глэшоу открыл дверь к единой теории электромагнетизма и слабого взаимодействия. К концу десятилетия последние штрихи в электрослабую теорию внес друг Глэшоу Стивен Вайнберг (они подружились еще в школе в Бронксе). Сначала эти идеи проигнорировали, однако несколько лет спустя два голландских физика – Герард Хоофт и его научный руководитель Мартинус Вельтман – показали, что все это имеет четкий математический смысл, и с этого момента дело пошло на лад. Объединение электромагнетизма и слабого взаимодействия было физическим эквивалентом падения Берлинской стены. В этот момент две теории стали одной, объединившись в нечто более мощное и глубокое. Конечно, такое уже случалось в физике, – например, когда Максвелл соединил электричество и магнетизм или еще раньше, когда Ньютон связал перемещение планет с движением падающего яблока. Разработка электрослабой теории стоит рядом с историческими триумфами Максвелла и Ньютона. Это действительно было чертовски прекрасно.