Удивительные числа Вселенной. Путешествие за грань воображения — страница 50 из 68

Однако соотношение десять миллионов миллиардов против одного – это еще маленькая проблема с естественностью. Теперь расскажу вам о большой.

10^(–120)

Смущающее число

В гамбургском ресторане «Херлин» разговаривали два человека. В 1920-е вся городская элита приезжала сюда, в ресторан элегантного роскошного отеля Vier Jahreszeiten на берегу озера Альстер. Прийти предложил Отто Штерн. Штерн радовался приятным мелочам – хорошей еде, хорошему вину и хорошей компании. Вольфганг Паули мог быть менее разборчив. Конечно, ему нравилось очарование этого места, но отсюда было далеко до захудалого кабаре в печально известном районе Санкт-Паули, где он выпивал накануне вечером. Там он ввязался в очередную стычку, и над правым глазом все еще был заметен порез. Он сказал Штерну, что упал, – Стерну незачем знать больше. Днем Паули вел жизнь профессора-стоика. По ночам он становился пьющим и скандальным повесой.

Пока физики допивали бренди, Штерн взволнованно рассказывал о новой идее, над которой работал: «Говорю тебе, Вольфганг, энергия нулевой точки реальна. Я рассчитал ее влияние на давление паров изотопов неона». Паули уставился на друга неподвижным взглядом. Он сделал глоток бренди, а Штерн продолжал: «Если бы нулевой энергии не было, как ты говоришь, разница в давлении паров для неона-20 и неона-22 была бы огромной. Астон[136] легко разделил бы их, но мы знаем, что он не смог!»

«А как же гравитация, Отто?» – почти без эмоций спросил Паули. Ответа не последовало. Паули достал ручку и блокнот. «Тогда давайте посчитаем». Он начал выписывать какие-то цифры, а Штерн с интересом наблюдал. Через пару минут Паули торжествующе поднял голову. «Видишь, Отто! Если бы энергия нулевой точки была реальной, мир не доходил бы даже до Луны!»

Описанная сцена приправлена драматургическими вольностями, хотя некоторые элементы истории верны. Несомненно, Штерн был жизнелюбом, которого можно было встретить только в лучших ресторанах; иногда он летал из Гамбурга в Вену только для того, чтобы пообедать. Серьезный контраст с Паули, который, как известно, часто посещал бары и бордели Репербана[137], когда оказывался вне поля зрения друзей и коллег. Верно и то, что Стерн сделал все возможное, чтобы убедить своего друга в нулевой энергии, но Паули был непреклонен. Знаменитый расчет Паули и его уничтожающее заключение появились где-то в середине 1920-х, как утверждали два его помощника вскоре после смерти ученого в 1958 году[138].

Но о чем спорили Паули и Стерн? Что это за нулевая энергия?

Как и у Волан-де-Морта, у нее много имен: это энергия нулевой точки, энергия вакуума, космологическая постоянная[139]. Как и Волан-де-Морт, она должна уничтожить Вселенную в момент творения. Не дать возможности сформироваться звездам и планетам. Лишить вас и меня шанса на рождение. И все же каким-то образом мы это сделали. Природа защищает нас от этого темного властелина, этой нулевой энергии и ее жажды устроить Армагеддон. Но никто не знает, как именно. Наше космическое выживание – величайшая загадка всей современной физики.

Энергия нулевой точки – это энергия пустого пространства. Представьте уголок Вселенной, который посетили межгалактические судебные приставы. Они выносят оттуда все – все звезды, планеты, скопления газа и комки темной материи. Они не оставляют ничего, кроме пустоты. Нет атомов и нет света. Заброшенное и пустое место. И все же в этом вакууме есть то, до чего судебные приставы не могут добраться. Там есть энергия – энергия нулевой точки; энергия, хранящаяся в самом вакууме. Несмотря на все свои усилия, судебные приставы не могут заглушить вакуум. Квантовая механика требует, чтобы это был бурлящий бульон из виртуальных частиц, постоянно появляющихся и исчезающих, касающихся мира своей энергией, пусть только на мгновение.

Чтобы понять это, сходите на кухню и возьмите большую миску. Бросьте в нее маленький шарик, например стеклянный или мяч для настольного тенниса. Что вы видите? Без сомнения, мяч немного покатается по миске, а потом уляжется на дне. Если его не трогать, вы ожидаете, что шарик останется точно в этом месте, если не считать возможных покачиваний от тепловых движений воздуха. А если вы охладите кухню до абсолютного нуля и удалите весь окружающий воздух? Шарик вообще не должен двигаться, верно? Он не должен шевелиться.


А он шевелится.

Причина – в квантовой механике и знаменитом принципе неопределенности Гейзенберга. Вспомните, что между положением и импульсом частицы есть обратная зависимость. Чем точнее мы знаем ее положение, тем хуже мы знаем ее импульс, и наоборот. Уменьшим масштабы в нашем эксперименте и бросим очень легкую частицу в крошечную миску. Если мы можем сказать, что частица покоится неподвижно на дне, это значит, что мы точно знаем и ее положение, и ее импульс. Это противоречит принципу неопределенности, поэтому что-то должно меняться. Частица должна совершать какое-то небольшое квантовое колебание. Она никогда не может полностью покоиться.

С этой идеей мы возвращаемся в наш пустой уголок Вселенной. До появления судебных приставов он был наполнен частицами, которые вступили в сговор и создали планеты, звезды и маленьких зеленых человечков. Там имелись электроны и фотоны, кварки и глюоны, калибровочные бозоны и бозоны Хиггса, а также все прочие частицы, включая те, что пока нам неизвестны. Это была просто рябь в фундаментальных полях, которая исчезла, когда пришел судебный пристав и все отключил. Если представить эти поля в виде океана, а частицы – в виде ряби на его поверхности, то задача судебных приставов состоит в том, чтобы прийти и заставить океан замолчать – сделать его идеально ровным.

Но этот океан никогда не бывает по-настоящему ровным. Благодаря принципу неопределенности Гейзенберга всегда существуют квантовые колебания. То же и с полями в вакууме – они никогда не бывают полностью потухшими. Всегда есть крошечные небольшие возмущения. Важно понимать, что эти возмущения – не реальные частицы, потому что в этом случае судебный пристав-исполнитель схватил бы их и унес. Значит, они должны быть виртуальными. Они очень похожи на кратковременные промежуточные электроны и позитроны, которые мы видели в предыдущей главе, когда бозон Хиггса путешествовал из Лондона в Париж. Напомним, что хиггсон уехал из Лондона как хиггсон и прибыл в Париж как хиггсон, но о том, что он делал в дороге между городами, можно только догадываться. В одном варианте он оставался бозоном Хиггса на протяжении всей поездки; в другом же он некоторое время был одет как электрон-позитронная пара. Фейнман сообщил нам, что любая частица при движении исследует все пути и возможности. Каждый из этих путей оставляет свой след на бозоне Хиггса, придавая ему некоторую массу.

То же и с вакуумом. Если мы вернемся к нашему пустому уголку Вселенной, то увидим, что он пуст сначала утром, а потом опять через какое-то время. Временной интервал не имеет особого значения. Важно то, что вы начинаете с пустоты и заканчиваете пустотой, а вот о том, что происходит посередине, можно только догадываться. Вакуум мог легко поменять костюм, как это делал бозон Хиггса, и позволить виртуальным частицам появляться и исчезать, как взрывная карамель во рту. Эти виртуальные частицы оставляют свой след в вакууме – точно так же, как оставляли его на хиггсоне. Они придают ему массу. И энергию – много энергии.

Чтобы выяснить, сколько энергии скрыто в вакууме, нам нужно разбить его на крошечные фрагменты, словно создавая величественный космический пазл в трехмерном пространстве. Как мы увидим, размер этих кусочков радикально повлияет на результат. Если нас интересует только физика, которую можно увидеть невооруженным глазом, мы можем представить такие фрагменты в виде ящичков размером чуть меньше миллиметра. Но мы должны быть более амбициозными. Когда Паули размышлял за обедом об этом вопросе, он сделал кусочки пазла размером с классический радиус электрона – несколько фемтометров в поперечнике. Это гораздо меньше, чем вы могли бы надеяться увидеть невооруженным глазом; примерно в 10 000 раз меньше размера атома. Во времена Паули это был край физики, граница того, что ученые пытались понять.

Как всегда в релятивистском мире, вместе с кратчайшим расстоянием появляется кратчайшее время. Если наши кусочки пазла имеют размер в несколько фемтометров, как у Паули, то самое короткое время, которое можно реально рассматривать, составляет около одной сотой от триллионной доли наносекунды. Это невообразимо малое время требуется свету, чтобы пересечь поперек один из наших ящичков. Мы используем этот временной интервал, чтобы установить ограничение на время появления и исчезновения виртуальных частиц из вакуума. Мы не будем рассматривать частицы, которые появляются на меньшее время, поскольку это соответствовало бы делению пространства на меньшие фрагменты пазла. Такие кратковременные сотрясения питают вакуум за счет окружающей квантовой энергии – точно так же, как это было в случае бозона Хиггса. Те частицы, что появляются на самое короткое время, дают вакууму наибольшую энергию, и их лихорадочный выход на сцену с огромной частотой выбрасывает столько энергии, сколько позволяет принцип неопределенности. Получается около пяти триллионных джоуля[140] на каждый наш маленький ящичек. Может показаться, что это не так уж и много, но ящички крохотные, поэтому плотность энергии опасно высока. В каждой кофейной чашке пустого пространства обнаруживается почти сто тысяч триллионов триллионов джоулей; такого количества энергии достаточно, чтобы испарить все океаны Земли.


Но мы не должны здесь останавливаться.