Изомеры, в молекулах которых радикалы (в данном случае метальные группы) расположены по одну сторону от двойной связи, называются цисизомерами, а если по разные — трансизомерами (от лат. cis — по эту сторону, trans — через, т. е. по разные стороны) (рис. 16).
Цис-, трансизомеры, имея различное пространственное строение, отличаются физическими, химическими, а иногда даже — физиологическими свойствами.
Как получают этилен? Обычно его выделяют из газов нефтепереработки, а также из газов коксования угля. Но можно получать этилен и в лаборатории. Еще в 1860 г., исследуя взаимодействие йодистого метилена с галогеноотнимающими средствами, А. М. Бутлеров не только получил этилен, но и сделал вывод о том, что в его молекуле должна быть двойная связь! Эта реакция протекала так:
Отщепляя воду от этилового спирта, тоже можно получить этилен. Для этого спирт нагревают с концентрированной серной кислотой:
Если же вместо этилового спирта использовать пропиловый спирт, то получим второй представитель алкенов — пропилен (пропен):
Пропилен во многом напоминает этилен. Он легко вступает в реакции присоединения. При присоединении водорода (в присутствии катализатора) он превращается в пропан, а при воздействии галогенов — в галогенопроизводные:
Галогеноводороды также присоединяются к пропилену. Но в отличие от этилена в этом случае может получиться два продукта.
Посмотрите внимательно на их формулы. Нетрудно заметить, что атомы хлора и водорода по-разному присоединились к углеродным атомам. Эту реакцию еще в XIX в. изучал Владимир Владимирович Марковников (1838-1904). Он установил (1869) правило, которое носит его имя: атом водорода в этой реакции присоединяется к углеродному атому, с которым связано больше атомов водорода, а атом галогена — к атому углерода, у которого водородных атомов меньше. Следовательно, из двух продуктов наиболее вероятным будет 2-хлорпропан. Как сейчас химики объясняют это правило?
Молекула пропилена, в отличие от молекулы этилена, несимметрична. Поэтому в ней электронная плотность распределена неравномерно. Дело в том, что электронная плотность в молекуле смещена от метильной группы в сторону двойной связи:
Направление распределения электронов показано стрелками. На крайнем углеродном атоме, который связан двойной связью, образуется небольшой (частичный) отрицательный заряд, обозначаемый δ- (дельта минус). На втором же атоме углерода создается недостаток электронов (возникает частичный положительный заряд δ+). Теперь нетрудно догадаться, что положительно заряженный атом водорода (протон) свяжется с крайним углеродным атомом (он несет избыток электронной плотности), а атом галогена устремится туда, где атом углерода имеет частичный положительный заряд.
Этиленовые углеводороды обладают еще одним интересным свойством. Они вступают в реакцию полимеризации, в результате которой образуется полимерный продукт. Например, при полимеризации этилена химики синтезируют замечательный продукт — полиэтилен:
О таких реакциях мы поговорим позже, когда познакомимся с высокомолекулярными соединениями.
Этиленовые углеводороды горят с выделением энергии. Вот как можно записать реакцию горения этилена:
С воздухом этилен, как и метан, образует взрывоопасные смеси.
В заключение скажем, что этилен и его гомологи — источники большого числа разнообразных органических соединений. Например, этилен используют для получения полиэтилена, этилового спирта, галогенопроизводных, оксида этилена и многих других ценных продуктов.
3.3. Всем известный ацетилен
Углеродные атомы могут соединяться между собой не только с помощью двойной связи, но и тройной. Самым простым углеводородом, содержащим тройную связь, является известный многим газ — ацетилен. Этот газ бесцветен, не имеет запаха. Однако при его получении из карбида кальция (а именно так получают ацетилен в технике) образуются газообразные примеси (РН3, H2S, NH3), которые придают ацетилену типичный «карбидный запах». Наверное, многие его ощущали в тех местах, где занимаются сваркой или резкой металлов. Ацетилен при горении в кислороде создает высокотемпературное пламя (свыше 3000 °С). Это и используют в технике. Кстати, ацетилен для автогенной сварки начали использовать еще в 1906 г. в США. Смеси ацетилена с кислородом или воздухом взрывоопасны, поэтому ацетилен хранят и транспортируют в специальных баллонах.
Впервые об ацетилене узнали в 1836 г., когда он был получен при действии воды на карбид кальция (СаС2). Но в 1862 г. этот газ уже был синтезирован М. Бертло при пропускании водорода через электрическую дугу между двумя угольными электродами (т. е. из элементов — углерода и водорода). Этот же ученый определил его состав (С2Н2) и дал этому газу название — ацетилен. Кроме того, он предположил, что ацетилен является первым углеводородом, образующим гомологический ряд с общей формулой СnН2n-2.
Итак, молекула ацетилена состоит из двух атомов углерода и двух водородных атомов. Следовательно, чтобы соблюсти четырехвалентность атома углерода, формулу ацетилена следует записать так:
Ацетилен — самое простое органическое соединение с тройной связью между углеродными атомами. Как же устроена такая связь?
Для объяснения снова обратимся к теории гибридизации. Согласно этой теории атом углерода в молекуле ацетилена находится в состоянии sp-гибридизации. Перекрыванием двух sp-гибридных орбиталей (по одной от каждого углеродного атома) образуется одна связь между углеродными атомами. Это — σ-связь, которую в формулах обозначаем одной черточкой. Две другие sp-гибридные орбитали (также по одной от каждого углеродного атома) образуют с 1s-орбиталями двух водородных атомов две σ-связи С—Н. Они расположены друг относительно друга под углом 180°. Но у каждого углеродного атома остались еще по две негибридизованные 2р-орбитали! Вот они-то, перекрываясь в двух взаимно перпендикулярных плоскостях, и образуют две π-связи. В формуле они обозначены еще двумя черточками. Обратите внимание, что перекрывание 2p-орбиталей, как в случае этилена, происходит «боками», а не «лбами». Поэтому прочность образовавшихся π-связей незначительна. Как видно из рисунка 17, молекула ацетилена имеет линейное строение. Таким образом, символ из трех черточек в формуле молекулы ацетилена означает сочетание одной σ-связи и двух π-связей.
Поскольку мы уже знаем строение одинарной, двойной и тройной связей, давайте сравним их длины. Не может быть, чтобы эти связи не отличались по длине. Действительно, рентгеноструктурный анализ показал, что длина простой связи равна 0,154 нм (1 нм = 10-7 см), двойной — 0,134 нм, а тройной — 0,120 нм. Таким образом, длина тройной связи — самая короткая.
Мы уже знаем, что впервые ацетилен получили из карбида кальция. Вот схема этой реакции:
Этим способом и сейчас получают ацетилен в технике. Для этого карбид кальция «выпекают» в электропечах при прокаливании кокса с негашеной известью при температуре 2500 °С:
Интересно, что впервые карбид кальция был получен еще в 1892 г. (уже специально для получения ацетилена) французским химиком Анри Муассаном (1852-1907).
Сейчас ацетилен в промышленности получают разложением метана при температуре 1500 °С:
Как оказалось, этим способом ацетилен получил М. Бертло еще в 1868 г. Тогда же он высказал мысль о том, что такой путь может оказаться перспективным. Что ж, ученый оказался прав: в 1936 г. в Германии и США ацетилен стали получать термическим разложением метана.
Ацетилен, как соединение непредельное, легко вступает в реакции присоединения со многими веществами. Например, при гидрировании (присоединение водорода) в присутствии катализатора вначале образуется этилен (разрывается одна π-связь), а затем — этан (разрывается вторая π-связь):
Подобным образом происходит и присоединение галогенов. Вначале образуется дигалогенопроизводное, а затем — тетрагалогенопроизводное. Например:
Но есть еще одна интересная реакция ацетилена. При действии на него аммиачного раствора оксида серебра получают ацетиленид серебра — продукт замещения водородных атомов на серебро.
Это желтоватое вещество в сухом состоянии способно взрываться от удара. Ацетиленид серебра формально напоминает соль, но не следует думать, что ацетилен — кислота. Дело в том, что водородные атомы в молекуле ацетилена немного «подвижнее», чем в молекуле этилена, а тем более — в молекуле этана. Поэтому ацетиленовые водороды замещаются на атомы серебра. Впервые ацетиленид серебра получил в 1866 г. М. Бертло, но еще раньше, в 1860 г., он обратил внимание на другую реакцию — взаимодействие ацетилена с водой. В результате этой реакции ученый получил уксусный альдегид.
Позже эту реакцию начал изучать известный русский химик Михаил Григорьевич Кучеров (1850-1911). В качестве катализатора он использовал соли ртути. Как установил ученый, при гидратации гомологов ацетилена можно получать кетоны (соединения, в которых карбонильная группа связана с двумя радикалами). Например:
«Реакция Кучерова» нашла широкое практическое применение. В некоторых странах (Германия, Италия, Англия, Франция и др.) получение уксусного альдегида было начато еще в 1914-1916 гг. Получают его по этой реакции и в нашей стране.
Ацетилен обладает одной интересной особенностью. В 1866 г. М. Бертло удалось получить из ацетилена бензол.
Так была установлена генетическая связь между ацетиленом и бензолом. Однако бензол получался в незначительных количествах. В 1924 г. академик Николай Дмитриевич Зелинский (1861-1953), применив в качестве катализатора активированный уголь, превратил эту реакцию в промышленный метод получения бензола.