Потребность в аминокислотах постоянно растет. И не только для питания людей, но и на подкормку скота и для приготовления лекарственных препаратов. Где же брать аминокислоты? Можно, конечно, получать из белков. Но это связано с разрушением ценных питательных продуктов. Можно аминокислоты синтезировать. Однако это сложно и дорого. Да и качество таких аминокислот ниже, чем природных.
И все же ученые нашли «работника» по производству аминокислот. Им оказались... микробы! Дело в том, что для своей жизнедеятельности некоторые микробы вырабатывают гораздо больше аминокислот, чем им необходимо самим. Вот эти «излишки» и являются источником аминокислот. Но и тут есть свои проблемы. Микроорганизмы, найденные в природе, вырабатывают не одну аминокислоту, а несколько — каждой понемногу. Пришлось «заставить» некоторых микробов производить только одну необходимую нам аминокислоту. Кислоты, получаемые этим способом, практически ничем не отличаются от тех, которые добываются обычным способом — разрушением белковых молекул. К тому же «микробные» аминокислоты намного дешевле.
Поскольку в молекуле аминокислот «уживаются» группы с противоположными свойствами, то эти соединения могут вступать в химические реакции, которые, казалось бы, противоречат друг другу. Например, аланин образует соли как с кислотами, так и с основаниями:
Но в этом нет ничего удивительного. Мы же говорили, что аминокислота — одновременно и кислота, и основание. Аминокислоты способны даже взаимодействовать друг с другом — за счет аминогруппы одной молекулы и карбоксильной группы — другой:
В результате такой реакции между остатками аминокислот устанавливается пептидная (амидная) связь —СО—NH—. Образовавшаяся молекула — дипептид — снова содержит две группы (амино- и карбоксильную), которые способны опять взаимодействовать с другими молекулами аминокислот. В результате образуются огромные молекулы — полипептиды, из которых состоит белок. Но об этих молекулах-гигантах речь пойдет ниже.
7.2. И в организме, и в кислом молоке...
Расскажем еще о двух кислотах, которые присутствуют в нашем организме и принимают самое непосредственное участие в его жизнедеятельности. Более того, одна из этих кислот присутствует практически во всех молочных продуктах — в кислом молоке, твороге, сметане, сыре, простокваше. Эта же кислота, находясь в организме, служит своеобразным сигналом физической усталости организма. Что же это за кислота?
В воздухе всегда присутствуют микроорганизмы. Попадая в молоко, даже пастеризованное, некоторые из них (молочнокислые бактерии) начинают интенсивно размножаться. Правда, на холоде этот процесс идет медленнее. Но все же идет. Для размножения бактерий необходима энергия, и они ее получают, расщепляя молекулы сахара — лактозы (молочный сахар) — на четыре части. Это называют молочнокислым брожением. Было установлено, что эти четыре части — не что иное, как четыре молекулы карбоновой кислоты, содержащей гидроксильную группу. Такие кислоты называют гидроксикислотами. Гидроксикислота, которая образуется при молочнокислом брожении, называется молочной кислотой.
Свое название эта кислота получила в связи с ее образованием в прокисшем молоке. Именно она и придает кислому молоку «кислый» запах.
Молочнокислое брожение наблюдается при приготовлении многих продуктов — сыра, квашеной капусты и т. д. Молочная кислота образуется даже при силосовании кормов для животных. Она образуется также в процессах обмена веществ в живом организме.
Впервые молочную кислоту выделил в 1780 г. шведский химик К. Шееле. Но с тех пор прошло слишком много времени, и в настоящее время химики научились получать эту кислоту синтетически. Однако наиболее выгодным способом является брожение отходов сахарного производства (мелассы) под влиянием ферментов.
Молочная кислота — тоже непростое соединение. Ведь в ее молекуле содержатся две группы — карбоксильная и гидроксильная. Поэтому она обладает свойствами кислоты и спирта. Например, как кислота, она образует соли, сложные эфиры и т. д. В то же время, проявляя свойства спиртов, молочная кислота дает алкоголяты, простые эфиры и другие соединения. При окислении молочная кислота превращается в пировиноградную кислоту:
Вы видите из формулы пировиноградной кислоты, что она содержит в молекуле карбонильную группу. Следовательно, она — кетонокислота.
Пировиноградная кислота — важный промежуточный продукт жизнедеятельности организма. Она образуется в числе других соединений, когда молекула глюкозы расщепляется с выделением энергии. Без энергии организм не может существовать. А вот что происходит с пировиноградной кислотой? Это зависит от поступления кислорода в организм. Если кислорода достаточно, то кислота, теряя СO2, превращается в уксусную кислоту, которая в конце концов может перейти в СO2 и воду. Но если кислорода не хватает (это происходит в мышцах при тяжелой работе), то глюкоза, расщепляясь, образует значительное количество пировиноградной кислоты. При большой физической нагрузке кровь не успевает поставлять в мышцы достаточно кислорода, чтобы превращать всю пировиноградную кислоту в уксусную. В результате пировиноградная кислота начинает восстанавливаться в молочную. Чем больше молочной кислоты накапливается в мышцах, тем сильнее они ощущают... усталость. В конце концов наступает момент, когда мышцы уже не в состоянии работать. В них скопилось много молочной кислоты. Это уже сигнал — нужен отдых. Отдыхая, мышцы «набираются» кислорода, чтобы с его помощью избавиться от молочной кислоты, превратив ее снова в пировиноградную кислоту (при окислении). Вот почему после бега или тяжелой работы человек продолжает тяжело дышать: кислородная недостаточность компенсируется не сразу. Необходимо время, чтобы организм насытился кислородом.
К числу довольно распространенных гидроксикислот относится лимонная кислота.
Эта кислота впервые была получена К. Шееле в 1785 г.
В настоящее время лимонную кислоту получают при грибковом брожении глюкозы или мелассы.
Где используются гидроксикислоты? Молочная кислота применяется в производстве лекарственных средств, пластификаторов, при крашении тканей, в кожевенной промышленности. Лимонная кислота находит применение в производстве ароматизирующих веществ для пищевой промышленности. Незаменима она в качестве консерванта и для очистки и шлифовки нержавеющей стали и других металлов.
7.3. Двуликие вещества
В органической химии встречаются и такие вещества, которые напоминают «двуликого Януса», так как могут одновременно существовать в разных «лицах». Таким соединением является, например, ацетоуксусный эфир (этиловый эфир ацетоуксусной кислоты).
Это необычное вещество было получено в 1863 г и долгое время не давало покоя химикам. Они часто спорили по поводу того, какое строение приписать этому соединению. Казалось бы, чего проще: ацетоуксусный эфир содержит карбонильную группу, а это значит, что вещество будет вступать в реакции, характерные для кетонов. Так и оказалось. Например, при восстановлении ацетоуксусного эфира образуется вторичный спирт:
Это обычная реакция кетонов — органических соединений, содержащих карбонильную группу. При восстановлении они всегда дают вторичные спирты. А вот еще одна реакция, характерная для кетонов, — реакция с синильной кислотой:
Известны и другие реакции, которые подтверждают кетонное строение ацетоуксусного эфира. Однако все было гораздо сложнее. Другие химики, а их было немало, утверждали совсем обратное: ацетоуксусный эфир — непредельный спирт.
Они не только утверждали, но приводили убедительные факты. Например, ацетоуксусный эфир вступает в реакцию с бромом и ведет себя как непредельное соединение. Более того, это вещество, оказывается, реагирует с металлическим натрием, образуя алкоголят — натрийацетоуксусный эфир:
Не правда ли, странно? Одно и то же вещество, а ведет себя то как кетон, то как непредельный спирт.
Ожесточенные споры не прекращались долго. Но наконец-то химики поняли, в чем дело. В их руках необычное вещество. Оно может пребывать в разных формах, имеющих разное строение. Одну форму назвали кетонной, а другую — енольной (ен — двойная связь, а ол — спирт). Эти две формы постоянно переходят друг в друга и получили название таутомеров (от греч. tauto — тот же самый и meros — часть):
Такое сосуществование двух форм, постоянно переходящих (в зависимости от условий реакции) друг в друга, назвали таутомерией. В обычных условиях ацетоуксусный эфир содержит 93% кетонной и 7% енольной форм. Но такое содержание форм непостоянно, оно зависит от растворителя и температуры. Например, при охлаждении до -70 °С кетонная и енольная формы становятся устойчивыми, раздельно существующими изомерами. Так что в условиях антарктической зимы пришлось бы говорить не о таутомерии двух форм, а о простой изомерии. Другими словами, в этих суровых условиях две формы не переходили бы друг в друга, а существовали бы раздельно, как обычные изомеры.
Но не только ацетоуксусный эфир способен на такую «двойственность». Немало и других веществ, которые ведут себя подобным образом. Например, ацетилацетон и гидроксамовые кислоты:
Вот и здесь мы видим две формы. Правда, та форма, которая изображена слева, более устойчива. Часто бывает так, что вещества, устойчивые при обычных условиях, при нагревании способны находиться в двух формах, переходящих друг в друга. Так, обычные бромистый пропил и бромистый изопропил, устойчивые и раздельно существующие изомеры, при нагревании до 250 °С могут сосуществовать друг с другом в таутомерном равновесии:
Вот какие чудеса бывают в органической химии!