Удовольствие от X. Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мире — страница 17 из 31

T по х, приравниваем ее к нулю и находим х.

Эти четыре шага требуют знания геометрии, алгебры, а также формул вычисления производных — эти навыки приравниваются к свободному владению иностранным языком, поэтому являются камнем преткновения для многих студентов.

Но окончательный ответ стоит затраченных трудов. Он показывает, что самый быстрый путь подчиняется отношению, известному как закон Снелла. Что? Страшно, что не только свет повинуется этому закону?

Закон Снелла[86] описывает, как преломляются лучи света при переходе из воздуха в воду. Например, когда лучи солнца попадают в бассейн. Свет в воде движется медленнее, так же как и пешеход по снегу, и отклоняется таким образом, чтобы минимизировать время движения. Подобным способом свет преломляется, когда переходит из воздуха в стекло или пластик, что происходит в линзах ваших очков.

Пугает то, что свет ведет себя так, будто он осмысленно изучает все возможные пути[87], а затем выбирает лучший.

18. Хоть ломтиками, хоть кубиками[88]

Математические знаки и символы часто кажутся загадочными, но лучшие из них — это визуальные ключи к их значениям. Символы нуля, единицы и бесконечности очень напоминают пустую дыру, единичную отметку и бесконечную петлю: 0, 1, ∞. А знак равенства = образован двумя параллельными линиями, поскольку, как писал его создатель валлийский математик Роберт Рекорд, в 1557 году: «Больше не существует двух вещей, которые были бы настолько равными».

В исчислениях самый узнаваемый значок — интеграл ∫. Его изящные линии вызывают в памяти музыкальный ключ или резонаторное отверстие скрипки — подходящее совпадение, учитывая то, что некоторые из очаровательных гармоник в математике выражаются интегралами. Но настоящая причина того, что математик Готфрид Лейбниц выбрал именно этот символ, менее поэтична. Это просто буква S для обозначения суммирования, но с длинной шеей.

А что суммируется — зависит от контекста. В астрономии сила притяжения Земли к Солнцу описывается интегралом. Она представляет собой общее воздействие (то есть сумму) всех сил гравитации, порождаемых каждым атомом Солнца на различных расстояниях от Земли. В онкологии растущая масса опухоли может быть смоделирована с помощью интеграла[89]. Он позволяет определить общее количество вводимого при химиотерапии лекарственного средства.

Понимание того, почему в этих случаях требуется интегральное исчисление, а не обычное суммирование, мы получили в начальной школе. Давайте рассмотрим, с какими трудностями мы столкнулись бы, если бы действительно пытались вычислить силу притяжения Земли к Солнцу. Первая трудность заключается в том, что ни Солнце, ни Земля не являются точками. Это гигантские шары, состоящие из колоссального числа атомов. Каждый атом Солнца — это нечто вроде гравитационного буксира для каждого атома Земли. Поскольку атомы крошечные, то их взаимное притяжение почти бесконечно мало, но их бесконечно много и в совокупности они могут составлять ощутимую силу. И надо каким-то образом просуммировать все их воздействия.

Но есть и вторая, более серьезная трудность: притяжение различных пар атомов различно. Для одних оно сильнее, чем для других. Почему? Потому что сила притяжения меняется в зависимости от расстояния: чем ближе объекты, тем сильнее они притягиваются. Атомы самых удаленных друг от друга частей Солнца и Земли испытывают наименьшее притяжение; атомы, находящиеся близко друг к другу, притягиваются сильнее, а те, которые между ними, испытывают среднее по силе притяжение. Интегральное исчисление позволяет просуммировать все эти изменяющиеся силы. Удивительно, но это можно осуществить по крайней мере в идеализированной модели, если считать Землю и Солнце твердыми шарами, состоящими из бесконечного числа точек непрерывной материи, причем каждая из этих точек оказывает бесконечно малое воздействие на другие. Как и во всех исчислениях, бесконечность и пределы, на помощь!

Исторически интеграл сначала появился в геометрии для нахождения площадей криволинейных фигур. Площадь круга можно представить как сумму множества тонких ломтиков пирога. В пределе имеем бесконечное множество кусочков, каждый из которых бесконечно тонкий. Эти кусочки затем можно ловко перестроить в прямоугольник, площадь которого нетрудно найти. Это типичный пример использования интеграла. Идея интегрирования заключается в том, чтобы взять что-то сложное, нарезать его на кусочки и перетасовать так, чтобы было легко складывать.

В трехмерном обобщении этого метода Архимед (а около 400 года до н. э. и Евдокс) рассчитывал объемы различных фигур путем их представления в виде стопки множества пластин или дисков, подобной порезанной на тонкие кусочки колбасе. Посчитав объемы различных ломтиков и гениально проинтегрировав их, Архимед и Евдокс получали полный объем исходной фигуры.

Сегодня будущим математикам и ученым по-прежнему даются в качестве упражнений классические геометрические задачи, требующие решения с помощью интегралов. Это одни из самых сложных в процессе обучения упражнений, и многие студенты ненавидят их. Но нет более верного способа отточить навыки работы с интегралами, которые понадобятся в любой области, где используются количественные вычисления, — от физики до финансирования.

Одна из таких мозгодробительных задач — вычисление объема твердого тела, которое является общей частью двух одинаковых цилиндров[90], пересекающихся под прямым углом.



Требуется очень богатое воображение, чтобы представить себе эту трехмерную фигуру. Поэтому нет ничего постыдного в том, чтобы признать свое поражение и отыскать другой способ ее визуализации. В настоящее время компьютерная графика[91] позволяет легко воспроизвести подобные фигуры[92].



Примечательно, что фигура имеет квадратное поперечное сечение, несмотря на то что является пересечением круглых цилиндров.

Сделаем стопку из бесконечного множества тонюсеньких квадратов, которая сужается от большого квадрата в середине фигуры до все более маленьких квадратиков и превращается в точку вверху и внизу.



Изобразить фигуру — всего лишь первый шаг. Для определения ее объема надо вычислить объемы всех отдельных составляющих ее кусочков. Архимеду удалось это сделать только в силу своей поразительной изобретательности[93]. Он использовал механический метод, основанный на рычаге и центрах тяжести, по сути, взвешивая фигуру в своем сознании, уравновешивая ее другими, уже ему известными. Недостатком его подхода, помимо того что он требовал гениальных способностей, было то, что его можно было применить только к очень ограниченному числу фигур.

Концептуальные проблемы, подобные этой, ставили в тупик лучших математиков в течение следующих девятнадцати веков — до середины XVII столетия, когда Джеймс Грегори, Исаак Барроу, Исаак Ньютон и Готфрид Лейбниц обосновали то, что сейчас называется фундаментальной теоремой интегрального исчисления[94]. Она мощно сковала два типа изменений, которые изучаются в исчислениях: накапливаемые изменения, представленные интегралами, и локальные изменения, представленные производными (см. главу 17). Выявив эти связи, основная теорема значительно расширила вселенную интегралов и уменьшила утомительную работу по их вычислению. В настоящее время ее можно запрограммировать на компьютере. С ее помощью даже задача о пересечении двух цилиндров, которая относилась когда-то к уровню мирового класса, становится общедоступной.

Только простейшие виды изменений могли быть проанализированы до появления основной теоремы интегрального исчисления. Когда что-то меняется постепенно, с постоянной скоростью, алгебра прекрасно работает. Это из области «расстояние равно скорости, умноженной на время». Например, автомобиль движется с неизменной скоростью 60 миль в час, при этом он проедет 60 миль за первый час и 120 миль к концу второго часа.

А как насчет изменений, которые происходят при изменении скорости?

Все вокруг нас постоянно меняется: увеличение скорости упавшего с высотного здания пенни, быстрая смена потоков, эллиптические орбиты планет, наши суточные биоритмы. Только исчисление может справиться с накапливаемым эффектом от неоднородных изменений, подобных этим.

На протяжении почти двух тысячелетий после Архимеда для прогнозирования эффекта от постоянных изменений существовал только один метод — последовательное складывание различных ломтиков. Предполагалось, что вы считаете скорость изменения в пределах каждого ломтика постоянной, затем вызываете аналог «расстояние равно скорости, умноженной на время», чтобы медленно двигаться до конца ломтика, и повторяете это до тех пор, пока все кусочки не будут рассмотрены. В большинстве случаев выполнить это невозможно. Бесконечные суммы слишком сложно вычислять.

Фундаментальная теорема интегрального исчисления позволила решить многие из ранее нерешаемых задач, упростила вычисление интегралов, по крайней мере для элементарных функций (суммы и произведения степеней, экспоненты, логарифмы и тригонометрические функции), которыми описываются многие явления в природе.

С помощью нижеприведенной аналогии я надеюсь пролить свет на основную идею фундаментальной теоремы и то, зачем она нужна. (Ее предложил мой коллега Чарли Пескин из Нью-Йоркского университета.) Представьте себе лестницу, общее изменение высоты которой от нижней до верхней ступенек равно сумме высот всех ступенек. Это верно даже при условии, что высота одних ступенек больше, чем других. Количество ступенек не имеет значения.