Наконец, можно повернуть матрас на пол-оборота, не поднимая его с кровати.
В отличие от переворачиваний H и V, при повороте R верхняя поверхность матраса остается вверху.
Теперь посмотрим на матрас, чтобы понять, в чем разница между его переворотами. Представим себе, что он полупрозрачный, взглянем на него сверху и проверим числа в углах матраса после каждой из возможных трансформаций. При горизонтальном переворачивании получаем зеркальное отражение чисел. Они тоже изменили порядок, поскольку числа 1 и 2 и 3 и 4 поменялись местами.
При вертикальном переворачивании порядок чисел тоже изменился, но по-другому: они, помимо своего зеркального отражения, еще и перевернулись вверх тормашками.
При вращении зеркального отражения не получается, а числа повернулись кверху вниз, и там, где была 1, теперь 4, а вместо 2 появилось 3.
Однако это лишь детали. Самое главное — как эти преобразования соотносятся друг с другом. В схемах их взаимодействия зашифрована симметрия матраса.
Чтобы выявить их с минимальными усилиями, нарисуем следующую диаграмму.
В углах схемы изображены четыре возможных положения матраса. Картинка в левом верхнем углу является точкой отсчета. Стрелка указывает на движения, совершаемые матрасом при переходе из одного положения в другое.
Например, стрелка, ведущая из верхнего левого угла к нижнему правому, описывает вращение R. Она двусторонняя, поскольку, если выполнить действие R дважды, это будет равносильно возврату в исходное положение.
Данное свойство поворота можно описать уравнением RR = I, где RR означает «дважды выполнить действие R», а I является нейтральным элементом, означающим отсутствие действия. При горизонтальном и вертикальном переворачивании тоже происходит отмена этих преобразований: HH = I и VV = I.
На схеме также представлено много другой информации. Например, здесь показано, что рискованное вертикальное переворачивание V эквивалентно действию HR, горизонтальному переворачиванию, сопровождаемому поворотом. Этот путь к аналогичному результату гораздо безопаснее. Данную последовательность действий можно записать в виде уравнения HR = V[152].
Следует также отметить, что порядок выполнения действий не имеет значения, поскольку HR = RH, и оба пути ведут к V. Это верно для любой другой пары действий. Вы можете подумать, что это подобно коммутативному (переместительному) закону для сложения обычных чисел x и y, согласно которому x + y = y + x. Однако будьте внимательны: группа в примере с матрасом — особый случай. Во многих других группах коммутативный закон нарушается. Подчиняющиеся ему группы-счастливчики будут особенно понятными и простыми.
А теперь итоги. Эта схема показывает, как добиться наиболее равномерного изнашивания матраса. Любая стратегия, примененная для всех четырех состояний, будет периодически работать. Например, чередование действий R и H удобно, а поскольку у нас есть возможность миновать шаг V, то нам не требуется много физических усилий. Чтобы напомнить о необходимости выполнять эти действия, некоторые производители дают такой совет: «весной — поворот, осенью — переворот».
Группа чисел, свойственная матрасу, иногда всплывает в самых неожиданных местах, начиная от симметрии молекул воды и заканчивая принципами действия пары электрических переключателей. В этом и состоит прелесть теории групп. Благодаря ей становится очевидным единство вещей, которые в других случаях кажутся не связанными между собой — как в анекдоте о том, как физик Ричард Фейнман получил отсрочку от призыва в армию[153].
Армейский психиатр попросил Фейнмана вытянуть вперед руки. Тот выполнил просьбу, выставив одну руку ладонью вверх, а вторую ладонью вниз. «Нет, по-другому», — сказал психиатр. Тогда Фейнман перевернул обе руки так, что одна ладонь опять оказалась вверху, а вторая внизу.
Фейнман не играл в игры разума, а просто решил немного пошутить в духе теории групп. Если рассмотреть все возможные способы вытягивания рук, а также различные переходы между ними, то стрелка образует такую же модель, как и в группе чисел матраса!
Однако все это слишком усложняет наши отношения с матрасами. Возможно, настоящий урок здесь тот, который вам и так известен: если вас что-нибудь беспокоит, ложитесь спать, и все пройдет.
27. Кручение и склеивание
В нашей местной начальной школе существует традиция приглашать в класс родителей для разговоров с детьми. Благодаря этому ребята узнают о различных профессиях и многих вещах, которым их не учат в школе.
Когда пришла моя очередь, я явился в первый класс, где училась моя дочь, с сумкой, наполненной лентами Мебиуса[154]. Накануне вечером мы с женой нарезали длинные полоски из бумаги и скрутили каждый из них на пол-оборота, вот так:
а затем склеили концы полосок так, чтобы получились ленты Мебиуса.
Для этого увлекательного занятия с формами для шестилетних детей требуются лишь ножницы, карандаши, скотч и немного любознательности.[155]
Когда мы с женой раздали ученикам ленты Мебиуса и указанные выше принадлежности, учитель спросил у детей, каким, по их мнению, предметом они сейчас занимаются. Один мальчик поднял руку и сказал: «Не уверен, каким именно, но точно знаю, что не языкознанием».
Конечно, учитель ожидал от него ответа «искусство» или, скорее, «математика». Однако лучшим ответом стала бы «топология»[156]. (В Итаке кто-нибудь из первоклассников обязательно бы такое выдал. Однако в том году ученик, чьи родители занимались топологией, учился в другом классе.)
Итак, что же такое топология? Это энергично развивающаяся отрасль современной математики, ответвление геометрии, но только более свободное. В топологии две формы рассматриваются как одна, если одна из них непрерывно переходит в другую в результате изгибов, кручения, растягивания или любой другой непрерывной деформации, но при этом ее нельзя разрывать или прокалывать. В отличие от жестких объектов в геометрии, объекты в топологии ведут себя так, как если бы были бесконечно гибкими или сделанными из идеальной резины.
Топология фокусирует внимание на самых глубинных свойствах формы, тех, которые не изменяются после непрерывной деформации. Например, две полоски резины, одна в форме квадрата, а вторая — круга, топологически неразличимы. Здесь не имеет значения, что у квадрата четыре угла и четыре прямые стороны. Эти свойства несущественны. При непрерывной деформации от них можно избавиться, округлив углы квадрата и изогнув его стороны в дуги.
Но есть одна вещь, от которой подобная деформация избавиться не может — это свойственная кругу и квадрату замкнутость линии границы[157]. Обе фигуры ограничены замкнутыми кривыми. Это их общая топологическая сущность.
Подобно этому сущность ленты Мебиуса заключается в ее скрученности на пол-оборота, обеспечивающей форме ее особые свойства. Самое замечательное, что лента Мебиуса имеет только одну сторону и только один край. Другими словами, ее лицевая и обратная поверхности в действительности являются одним и тем же, так же как и ее верхний и нижний край. (Чтобы проверить это, просто ведите пальцем по середине ленты, пока не вернетесь в исходное положение.) Здесь благодаря полуобороту верхний и нижний край бумаги объединились в одну большую непрерывную кривую. Подобным образом объединились и обе стороны. Когда лента склеена, эти ее свойства фиксируются. Готовую ленту Мебиуса можно растягивать и скручивать, уже ничто не изменит того, что у нее одна сторона и один край.
Предложив первоклассникам исследовать вытекающие из этого удивительные свойства ленты Мебиуса, я хотел им продемонстрировать, насколько это интересно и увлекательно.
Сначала я попросил их взять карандаш и аккуратно провести линию посередине ленты. И они сосредоточенно стали рисовать нечто наподобие показанного здесь пунктира.
Сделав один оборот, они остановились, озадаченно переглядываясь. Потом стали шумно обсуждать, почему их линии не замкнулись, как ожидалось. Карандашная линия не вернулась в исходную точку, а оказалась на «другой» стороне поверхности. Это и был первый сюрприз: необходимо дважды пройти по ленте Мебиуса, чтобы добраться до исходной точки.
Внезапно один мальчик расплакался. Когда он обнаружил, что его карандаш не вернулся в исходное положение, он подумал, что сделал что-то не так. Сколько мы его ни убеждали, что он ничего не напутал и именно так и должно получиться, надо было просто пройти еще один круг, оказалось, уже поздно. Валяясь на полу, ребенок безутешно рыдал.
С некоторой опаской я предложил классу сделать еще одно дело — взять ножницы и разрезать ленту по всей длине по средней линии. «Как думаете, что выйдет в результате?» — спросил я у них.
«Они распадутся! Получится две части!» — предположили малыши. Но когда они попробовали, вышло нечто абсолютно невероятное (одна лента двойной длины), и возгласы радости и удивления стали еще громче. Это напоминало какой-то фокус.
После этого внимание ребят уже было сложно удержать. Они полностью увлеклись собственными экспериментами, изготавливая всевозможные варианты лент Мебиуса, закрученные на два или три полуоборота, разрезая их на две, три или четыре части, создавая всевозможные скрученные петли, цепочки и узлы, причем все это сопровождалось возгласами: «Смотрите, что у меня получилось!» А я все не мог успокоить плачущего мальчугана. Полагаю, мой урок не первый довел кого-то из учеников до слез.