Угроза из космоса. Метеориты в истории человечества — страница 23 из 24

(Вместо заключения)

Итак, в этой книге мы поговорили с вами о том, какова история обнаружения «небесных камней», насколько велика астероидная опасность и как с нею бороться. В заключение, памятуя о лозунге изобретателей «Обрати вред на пользу», давайте обсудим еще и такую идею.

Человечество просто обязано найти управу на астероидов. Хотя бы потому, что в будущем, вероятно, клады будут искать не под водой или под землей, а над Землей, в космическом пространстве. Так полагают некоторые эксперты. И, надо сказать, их оптимизм основан на здравом расчете: железный астероид диаметром в 8 км может стоить квинтильон долларов. А квинтильон, между прочим, – это единица с 18 нулями. Но и это еще не все…

Ценности Вселенной

Алмазная пыль буквально рассыпана между звезд, считают американские астрономы. С помощью телескопа «Хаббл» и архивных данных они провели спектральный анализ излучаемого звездами ультрафиолетового света. В результате было обнаружено слабое, но довольно четкое световое искажение, которое возникает только под действием алмазных зерен.

Такое искажение было замечено на всех изученных направлениях. К тому же в пылевых облаках, окружающих молодые звезды, были найдены кристаллические углеводные структуры. Ученые сравнили спектр ультрафиолетового излучения обнаруженных структур со спектром излучения алмазов, найденных в метеоритах 10 лет назад, и эти спектры полностью совпали.

Более того, ученые из Йельского университета недавно обнаружили в созвездии Рака скалистую суперземлю «55 Cancri e», которая, судя по показаниям спектрометра, состоит из модифицированного углерода. То есть, говоря попросту, из алмаза.

Это окончательно уверило ученых в том, что они напали на космическую алмазную жилу. По их мнению, одна только галактика Млечный Путь содержит миллиарды и миллиарды тон алмазов. Однако заниматься их добычей пока не имеет смысла, так как размер этих алмазных россыпей не превышает нескольких нанометров.

Анализ показал, что алмазы распространены в межзвездном пространстве достаточно широко. На данный момент существуют две теории, объясняющие способы «накопления» космическими объектами несметных богатств. Согласно одной из них, алмазные зерна, как и множество других сложных молекул в космосе, возникли при высочайшей температуре и давлении во время взрывов сверхновых звезд.

Алмазные зерна находятся не только в атмосфере звездных яслей и вблизи от новорожденных звезд, но и в глубоком космосе. Они практически неразрушимы и способны долгое время накапливаться в галактике. Так, некоторые драгоценные камни могли впитать в себя часть алмазной пыли во время формирования Солнечной системы около 4 500 000 000 лет назад. Этим можно объяснить находки алмазов в метеоритах.

По мнению некоторых ученых, во время взрывов сверхновых звезд были катапультированы в космос и такие тяжелые элементы, как золото и платина. Однако подобное предположение не объясняет образования всего количества благородных металлов Земли, а также их неравномерного распределения.

По другой теории, золото, платина и серебро возникли сотни миллионов лет до рождения Солнечной системы в результате гигантских взрывов столкнувшихся нейтронных звезд. Чтобы доказать это предположение, английские и швейцарские ученые с помощью компьютера смоделировали столкновение двух нейтронных звезд. Выяснилось, что при тесном сближении гигантские гравитационные силы буквально разрывают нейтронные звезды, плотность которых невероятно высока.

При этом выделяется столько энергии, что ее достаточно для освещения всей Вселенной на протяжении нескольких миллисекунд. При этих выбросах температура достигает нескольких миллиардов градусов и атомные ядра спаиваются в тяжелые элементы, такие как уран, золото, платина. В результате столкновения нейтронные звезды превращаются в черную дыру, а их охлаждающиеся осколки разлетаются по космосу.

Астероид на поводке

Помните, в начале книги рассказывалось, как американский инженер и предприниматель Гарри Баринджер организовал акционерное общество по добыче алмазов и платины из огромного астероида, упавшего в пустыне Аризоны? Затея эта прогорела лишь потому, что небесное тело, с огромной скоростью ударившееся о нашу твердую планету, попросту испарилось. Однако этого не случится, если мы станем ловить астероиды еще на подлете к планете.

В настоящее время существует несколько проектов освоения полезных ископаемых, которые можно добывать в космосе. Так на астероидах находят углерод, железо, никель, воду… Понятно, что все это может оказаться полезным людям, которые начнут осваивать околосолнечное пространство. Однако доктор Джефри Каргель из отделения астрогеологии Геологической службы США в Флагстафе (штат Аризона) полагает, что начинать освоение астероидов нужно не с этого.

«Анализ показывает, – рассуждает он, – что на некоторых небесных телах содержание редких металлов – платины, рубидия или цезия – намного больше, чем в земной коре. Встречаются также и метеориты с включениями алмазов. Стало быть…»

В общем, согласно самым приблизительными подсчетам, металлический астероид диаметром около километра может содержать в себе до 400 000 т драгоценных металлов.

Добраться же до такого богатства сравнительно просто даже при современном уровне развития техники. Ближайшие к Земле астероиды движутся вокруг Солнца по орбитам, близким к земной. А поскольку и разница в скоростях движения невелика, то заслать туда автоматического разведчика тоже нетрудно. Во всяком случае, чтобы долететь до некоторых астероидов топлива требуется меньше, чем для экспедиции на Луну.

Вернуться оттуда еще легче, ввиду малой гравитации на таком относительно небольшом небесном теле.

Если разведка окажется удачной, на астероид высадится вторая экспедиция, которая привезет с собой необходимое оборудование для создания завода-автомата. Причем для добычи драгоценного металла полезным может оказаться и космический холод. При температурах, близких к абсолютному нулю, большинство металлов становятся хрупкими, словно стекло…

Металлическая крошка затем будет отправлена в печь для очистки металла от возможных примесей. Заодно расплавленный металл в условиях малой гравитации нетрудно отформовать в каплеобразные капсулы массой около 20 т каждая.

«Эти капсулы подаются к электромагнитной катапульте – гигантскому соленоиду, который сможет со сравнительно небольшими затратами энергии (ее дадут солнечные батареи) выбрасывать капсулы в космос с таким расчетом, чтобы они, сообразуясь с законами небесной механики, попали на околоземную орбиту, где их и пустят в оборот», – полагает Джефри Каргель.

Интересная деталь: в управлении кабинет доктора Каргеля находился аккурат напротив кабинета Юджина Шумейкера – того самого, который обнаружил комету, упавшую затем на Юпитер. Так вот Шумейкер полагал, что подобная охота за астероидами может вестись и с целью обеспечения безопасности самой нашей планеты.

Как мы уже говорили, время от времени какой-то из небесных посланцев пролетает в опасной близости от Земли. Неровен час – столкнется… Электромагнитные пушки, установленные на астероиде, выбрасывая капсулы, тем самым будут менять и момент движения астероида. Таким образом, заодно можно будет корректировать и траекторию его движения с тем, чтобы он, не дай бог, не приблизился к Земле чересчур близко.

В общем, как видите, проект стоит того, чтобы из чисто научной перевести его в практическую стадию. Быть может, стоит организовать международное акционерное общество, члены которого и займутся охотой за метеоритами?..

Спасатели человечества

Эту же идею поддерживает заместитель директора научно-производственной фирмы «Магеллан» Александр Расновский. Но решает ее по-своему.

«Некоторое время назад сотрудниками НИИ тепловых процессов под руководством академика Виталия Коротеева был разработан проект снабжения Земли дешевой энергией из космоса, – рассказывает он. – Для этого они предлагают разместить на околоземной орбите несколько огромных зеркал, которые будут отбрасывать на земную поверхность солнечные "зайчики". Дополнительное освещение сэкономит энергию в городах, повысит урожайность растений, продлит сроки сельхозработ и т. д.».

Однако изготовить такие зеркала не так-то просто – придется выводить на орбиту тысячи тонн различных грузов – прежде всего светоотражающей пленки. «А что, если эту пленку изготовлять прямо на орбите, из металлического астероида? – говорит Расновский. – Правда, сначала придется изменить его траекторию, подогнать к нашей планете».

Как это сделать, мы с вами, в принципе, уже разобрались. Осталось уточнить некоторые детали. После того как с помощью направленных ядерных взрывов траектория небесного гостя будет изменена таким образом, что он станет искусственным спутником нашей планеты, его подгонят к тому месту, где на орбите будет развернут космический завод по переработке доставленного сырья в готовые изделия. Это могут быть не только пленки для космических зеркал, но и фермы, модули для орбитальных станций, межпланетных космических кораблей и т. д.

«Вокруг Земли постоянно крутится гигантское скопление астероидов – несколько тысяч малых планет диаметром от 6 до 11 км и огромное количество более мелких осколков, – утверждает генеральный конструктор Центрального научно-внедренческого КБ "Космос" со штаб-квартирой в Одессе Н. Н. Разумный. – А значит, рано или поздно охотой за ними все равно придется заниматься. Так что лучше подготовиться к этому загодя…»

Поэтому генеральный конструктор и его команда разрабатывают концепцию корабля «РУСС». С его помощью предполагается отлавливать относительно небольшие небесные тела – диаметром 120–170 м и сбрасывать их на поверхность Луны (или, по крайней мере, делать их спутниками Селены).

Возить астероиды прямо к Земле Разумный не хочет по причинам, связанным с техникой безопасности. Дело в том, что для отлавливания астероидов КБ «Космос» намерено построить «летающую тарелку» диаметром около 300 м и летным весом порядка 600 тыс. т! Приводиться в действие такая махина должна двигателями, работающими на холодном термояде и сможет развивать по замыслу конструктора скорость до 340 км/с. А ну как экипаж тарелки по каким-то причинам замешкается и «тарелка» вместе со своим грузом «загремит» на Землю?.. Взрыв будет не меньше того, что обещает нечаянно залетевший астероид…

Так что лучше держаться от планеты подальше, вести «охоту» на дальних подступах к ней и переплавлять добычу к Луне. На Селене же будет поставлен завод по переработке доставленной добычи, очистки драгоценных металлов. Готовая продукция будет затем переплавляться на Землю «тарелками» меньших размеров или вообще с помощью… космического лифта, проекты которого ныне прорабатываются.

Землю выручит… астероид?

И, наконец, давайте поговорим еще об одном проекте далекого будущего, в котором предполагается участие астероидов.

Как известно, наше светило представляет собой обычную звезду типа желтых карликов, каких во Вселенной довольно много. А потому и известна их судьба. Обычно эти звезды с температурой поверхности 5000–6000 К живут в среднем 10 млрд лет. А в конце своей жизни зачастую превращаются в красных гигантов, неимоверно увеличиваясь в размерах. И лишь после этого, побушевав немного, светило сбросит свои внешние слои и окончательно успокоится, превратившись в белый карлик – небольшую, совсем непримечательную и незаметную звездочку.

При этом, по мнению многих астрофизиков, планеты земной группы, в том числе и сама Земля, стадию красного гиганта не переживут. Ведь диаметр Солнца может увеличиться чуть ли не до орбиты Юпитера. В итоге, как полагают астрофизики Роберт Смит из Университета Сассекса (Великобритания) и Клаус Петер Шредер из Университета Гуанахуато (Мексика), наша планета сначала раскалится, а затем упадет на Солнце, в огненных глубинах которого и исчезнет. И произойдет это, по космическим меркам, довольно скоро – через 4,5–7,5 млрд лет.

Так неужели наши нынешние потуги напрасны, и человечество все равно ожидает мрачная перспектива гибели в солнечном пекле? Оказывается, есть и оптимистический вариант развития событий. Наше Солнце на стадии превращения в красный гигант быстро потеряет часть массы. В результате его гравитационное притяжение резко уменьшится. Поэтому орбиты всех планет Солнечной системы увеличатся, и они окажутся на значительном удалении от светила.

Впрочем, в статье Смита и Шредера, опубликованной в британском журнале «Monthly Notices of the Royal Astronomical Society», рассматривается и менее оптимистичный вариант. Так, согласно расчетам, возможно, что на стадии красного гиганта Солнце будет замедлять скорость вращения вокруг своей оси. В результате обратное гравитационное влияние Земли на светило возрастет. И, как утверждают Смит и Шредер, «на поверхности звезды будет наблюдаться эффект, подобный приливам наших морей и океанов, на которые влияют сила тяготения Солнца и гравитация Луны. В результате этого эффекта на ближайшей к нашей планете стороне Солнца возникнет огромный приливный горб – выпуклость, которая станет быстро выпячиваться в сторону Земли». Этот горб замедлит скорость расширения земной орбиты, и планета все же упадет на Солнце через 7 млрд лет.

Но, оказывается, даже такая отсрочка устраивает не всех. Так, Дон Корикански, Грег Лафлин и Фред Адаме – ученые из Университета Санта-Круз (Калифорния) – предложили хитроумный вариант спасения планеты. Ученые предлагают слегка скорректировать траекторию Земли с помощью… какого-нибудь крупного астероида, периодически проходящего неподалеку от планеты. Надо лишь «заарканить» его и пустить по нужной траектории. Это позволит не только избежать падения Земли на Солнце, но и сохранить привычные для людей климатические условия. Делать подобную корректировку предлагается один раз в 6000 лет.

Теоретики полагают, что «такой вариант выглядит вполне реализуемым как технологически, так и энергетически. Разумеется, сейчас наши технологические возможности весьма далеки от того уровня, который обеспечит успешную реализацию проекта, но большой спешки в данном вопросе и не требуется».

Однако стоит астрофизикам ошибиться в вычислениях, и астероид врежется в Землю гораздо раньше, чем она упадет на Солнце. Поэтому более приемлемым решением некоторые ученые считают создание «спасательных паромов», которые отбуксируют Землю от Солнца за счет работы своих собственных двигателей, например атомных, лазерных или ионных.

Впрочем, время на вдумчивое создание подобной спасательной системы у конструкторов еще есть. Как-никак 7 млрд лет все-таки достаточно долгий срок.

Новое солнце из Юпитера

Пока же ученые общими усилиями попытались спрогнозировать, каким будет будущее нашей планетной системы. Так, Джордж Поллак и его коллеги из исследовательского центра НАСА показали, что ныне Юпитер излучает в 1,9 раза больше энергии, чем получает от Солнца.

По мнению Поллака, наиболее правдоподобным объяснением, откуда берет дополнительное излучение планета-гигант, может послужить гравитационный эффект, который весьма характерен для зарождающихся звезд. В результате сжатия Юпитера под действием собственных сил тяготения и производится «излишнее» тепло.

При этом, как полагают некоторые астрономы, сжатие это может продолжаться до тех пор, пока в недрах не начнутся различные циклы ядерного «горения». Другие исследователи, впрочем, полагают, что реакции при нынешней массе Юпитера начаться не могут, поскольку она не достигает некой критической величины.

Однако недостаток массы может быть восполнен в будущем. Как уже говорилось выше, по велению неумолимых законов природы через несколько миллиардов лет Солнце из желтой карликовой звезды превратится в красный гигант.

Когда это случится, горячее дыхание Солнца достигнет орбиты Меркурия и даже Венеры. Причем это будет лишь первый акт драмы дряхлеющего светила. Вполне вероятно, что, человечество, переселившееся к тому времени на окраину Солнечной системы, станет свидетелем рождения… Юпитера-звезды.

Ведь угасая, Солнце будет расплескивать свою массу, солнечный ветер разнесет ее по Вселенной, и, вполне возможно, часть ее попадет на Юпитер. Этого будет вполне достаточно, чтобы из гигантской планеты Юпитер превратился в маленькую звезду, вокруг которой уже сейчас имеется собственная планетная система. И на ней, возможно, существует своя жизнь.

А если и нет, то она там наверняка появится, как только в округе будут созданы подходящие природные условия. Ведь своеобразные «семена жизни» в виде спор микроорганизмов, как убедились ученые, есть на многих кометах и астероидах, пересекающих Солнечную систему из конца в конец и время от времени падающих на планеты и спутники.

Таким образом, «странники Вселенной» несут не только гибель всему живому, но и зачатки новых организмов жизни. Так происходит кругооборот жизни в природе. И нечего нас апокалипсисом пугать…

Носители жизни

Более того, исследователей давно интересует, откуда взялась жизнь на нашей планете. Одни ли мы во Вселенной? Шлют ли нам инопланетяне свои послания?..

Эти вопросы интересуют многих людей, причем не только ученых… Вот какую версию на этот счет предлагает, например, жительница Новосибирска Анастасия Смирнова.

Всем компьютерщикам известно, что, входя в Сеть, надо перво-наперво включить защиту от вирусов. Иначе неприятностей не оберешься. Между тем, задумывались ли вы над тем, почему небольшие программки, взламывающие программы большие и заставляющие их вместо выполнения рабочих команд штамповать собственные копии, назвали вирусами?

Да потому, что тут имеет место полная и всеобъемлющая аналогия. Самые малые живые существа, известные науке – настоящие вирусы, занимаются тем же, что и компьютерные. Внедряясь в более высокоорганизованную клетку, они переориентируют ее с рабочего режима на воспроизведение новых вирусов.

Случайно ли это? Согласно Википедии, вирус (от лат. virus – яд) – микроскопическая частица, способная инфицировать клетки живых организмов. Вирусы являются облигатными паразитами, т. е. они не способны размножаться вне клетки.

Вирусы являются одной из самых распространенных форм существования органической материи на планете по численности – так воды Мирового океана содержат колоссальное количество бактериофагов (около 1011 частиц на миллилитр воды).

Вирусы имеют генетические связи с представителями флоры и фауны Земли. Согласно последним исследованиям, геном человека более чем на 30 % состоит из информации, кодируемой вирусоподобными элементами. С помощью вирусов может происходить так называемый горизонтальный перенос генов, то есть передача генетической информации не от отца к сыну и так далее, а между двумя неродственными (или даже относящимися к разным видам) особями.

Считается, что крупные ядерно-цитоплазматические ДНК-содержащие вирусы происходят от более сложных и, возможно, клеточных паразитов, утративших значительную часть своего генома. И действительно, некоторые крупные вирусы (скажем, возбудитель оспы) кодируют функционально избыточные на первый взгляд ферменты, по-видимому, оставшиеся им в наследство от более сложных форм существования.

Для нас примечательно в данном случае то, что новые штаммы вирусов довольно часто попадают на нашу планету из космоса, на «борту» метеоритов и комет. Во всяком случае, их довольно часто там обнаруживают.

Но откуда они там берутся? Можно, конечно, предположить, что вирусы и бактерии просто являются одной из форм существования материи во Вселенной – такой же, как атомы и молекулы, которые, как полагают ныне ученые, образовались в результате процессов, произошедших после Большого взрыва.

Ну а почему произошел этот самый взрыв? Ответ на этот вопрос теряется во тьме нашего невежества. Впрочем, некоторые исследователи полагают, что никакого взрыва никогда и не было, а объем Вселенной меняется подобно мехам гармошки. В настоящее время мы наблюдаем период растяжения этих «мехов» – все галактики разбегаются от центра. Но пройдет какой-то срок, скорость разбегания уменьшится, а затем галактики сменят направление своего движения и начнут сближаться. Но опять-таки до определенного предела, после которого сжатие снова сменится растяжением. И так – до бесконечности…

А между крупными небесными телами все время шныряют тела поменьше. Этакие «почтари Вселенной» – кометы и астероиды – разносят между планетами, а возможно, и между планетными системами этакие «семена жизни» – вирусы и бактерии, из которых затем, попав в подходящие природные условия, и развиваются все более сложные формы жизни.

Такую теорию панспермии выдвинул еще во второй половине XIX века шведский ученый Сванте Аррениус. Долгое время гипотеза шведского ученого не имела широкой поддержки. И даже не из-за того, что предполагала наличие некой «божественной руки», производившей посев. Нет, просто никто не понимал, как микроорганизмы могут длительно путешествовать в космическом пространстве, не погибая от губительных излучений.

Лишь в середине 80-х годов XX века лауреат Нобелевской премии Фрэнсис Крик, Лесли Оргел и их коллеги попытались дать ответ на вопрос, как могла осуществляться безопасная транспортировка микроорганизмов.

И выяснили, что даже при прохождении на большой скорости сквозь плотные слои атмосферы внутри кометных ядер и астероидов сохраняются достаточно комфортные условия, позволяющие спорам бактерий и штаммам вирусов благополучно уцелеть.

Предположим, что именно такой космический корабль и принес жизнь в бактериальной форме на нашу Землю. Споры начали расти и развиваться в земном «супе», эволюционировали тем путем, который нам сейчас хорошо знаком.

Но откуда они могли прилететь?

«Инкубатор» Вселенной

Пытаясь выявить, где мог быть расположен «инкубатор Вселенной», Фрэнсис Крик и его сторонники предположили, что наилучшими условиями для этого располагают только планеты. Причем при самой осторожной оценке таких планет с жидким органическим «супом», в котором могла бы развиваться жизнь, должно быть не меньше миллиона в одной только нашей Галактике.

А коли так, то правомерно поставить такой вопрос. Является ли Земля все же первой обителью жизни, или ее споры могли быть занесены на нее извне? И тут даже при очень большом желании признать колыбелью жизни во Вселенной именно нашу планету, мы должны будем осознать, что такой шанс весьма невелик. Чисто интуитивно можно предположить, что другие планеты ничуть не хуже, а возможно, даже и больше подходят для этого…

«Несмотря на такую неопределенность, я хочу предложить рабочую гипотезу – с умеренной добавкой храбрости, что жизнь, если она где-нибудь возникла, развивалась так же трудно, как и на Земле, – писал Крик. – Это значит, что путь от "супа" до разумного существа продолжался около четырех миллиардов лет. Для этого события необходимы соответствующие планеты и определенные элементы на их поверхности или вблизи нее.

В момент Большого Взрыва, давшего начало нашей Вселенной, таких условий не было. С достаточным основанием мы можем принять, что многие атомы в наших телах возникли не тогда, а лишь потом; они были синтезированы в недрах звезд. Эти звезды большой массы вскоре исчерпали свое "ядерное горючее", взорвались, и вещество их рассеялось в окружающем пространстве, где оно впоследствии сконденсировалось, образовав новые звезды и планетные системы. Хотя мы и не знаем точно, сколько времени это продолжалось, два миллиарда лет были бы разумной оценкой…»

А как стара сама Вселенная? И тут исследователи полагают, что здесь имеет место аналогия с определением возраста женщины. Не стоит рисковать, пытаясь выявить его совершенно точно. Одни полагают, что 20 миллиардов лет было чересчур много, а 7 миллиардов – мало. Большинство сходится на мысли, что 14–16 миллиардов лет будет в самый раз.

Если предположить, что процесс формирования тяжелых элементов и планет занял не менее миллиарда лет, все равно остается еще достаточно времени для развития жизни.

Странники небес

Давайте предположим, что за первые 4 миллиарда лет на первой подходящей планете возникли первые разумные существа. Они развили науку и технологию, причем до такого уровня, который превосходит все, чего мы достигли, потому что имели в распоряжении больше времени.

Мы можем предполагать, что «они» знали намного больше, чем мы сейчас, и развили технологию несравнимо совершенней нашей. Они могли открыть, что в Галактике есть множество пригодных для жизни планет, которые имеют моря и сушу, постоянно облучаются своими звездами, обладают соответствующей атмосферой и, как следствие, располагают огромным количеством «супа» на своей поверхности. Возможно, они открыли также, что, в то время как «суп» встречается довольно часто, случайные химические реакции, важные для жизни, происходят крайне редко или не происходят совсем. Что они при этом могут сделать?

Для того чтобы понять ход рассуждений этих существ, мы должны принять во внимание множество факторов. Они могли бы знать, что их существование на родной планете ограничено во времени. Даже если оставить все другие катастрофы, их звезда (как и наше Солнце когда-нибудь) должна закончить свою «жизнь», когда энергия ее будет израсходована. В этой ситуации они могли бы обдумать такую возможность, как колонизация других планет. Возможно, они даже пытались это осуществить, но поняли, что шансы на успех у такой экспедиции малы – уж слишком велики межпланетные, а тем более – межзвездные расстояния.

В таком положении напрашивается возможность отправить в космическое путешествие живые существа на низкой ступени эволюционного развития. В этом случае имеется надежда, что они выживут и размножатся в других условиях и, может быть, даже взберутся на высшую ступень жизни. Если принять во внимание все факторы, то наилучшие кандидаты – микроорганизмы. Они очень малы, крайне неприхотливы, а их споры могут в «законсервированном» состоянии пребывать весьма значительное время, не теряя своей «всхожести».

Причем «корабли» для вирусов и бактерий вовсе не обязательно должны быть изготовлены на каких-то космических верфях. Еще в 60-е годы XX века Дж. Оро из Хьюстонского университета высказал предположение, что на поверхности некоторых «небесных камней» – метеоритов – можно обнаружить органические соединения, аминокислоты, которые затем и стали основой жизни на нашей планеты.

Правда, поначалу на эту гипотезу опять-таки никто не обратил внимания: господствовало представление, что на поверхности камня зародыши жизни долго не продержатся. Однако позднее она подтвердилась экспериментально: на поверхности углистых хондритов, составляющих около 5 % падающих на Землю метеоритов, действительно были обнаружены подобные соединения.

Найдены ответы и на вопросы такого рода: «Как именно уцелели аминокислоты, когда метеорит "продирался" сквозь атмосферу?» Один из наиболее распространенных вариантов гласит, что эти вещества попросту сдуло с поверхности метеорита в самых верхних слоях атмосферы, и они потом самостоятельно «парашютировали» на поверхность Мирового океана, где и получили надлежащие условия для дальнейшего развития. Те же соединения, которые остались на поверхности самого метеорита (где потом и были обнаружены), могли уцелеть, прикрытые толстым слоем льда, которым был первоначально покрыт метеорит.

Еще лучшие условия сохранения «спор жизни» – на кометах. Ведь они чаще всего представляют собой довольно рыхлое образование: каменное ядро окружено обычно замерзшим льдом или даже затвердевшими от холода газами. Когда комета подлетает достаточно близко к светилу, часть ее оболочки начинает испаряться, образуя тот самый пышный хвост, по которому это небесное тело и отличают от других объектов.

Хранители вечности

Кометы – это космические погребения выдающихся жителей ранних цивилизаций далеких миров. Такое предположение выдвигает уфолог из подмосковного города Фрязино Михаил Петрович Славгородский. По его мнению, американцы и европейцы вовсе не случайно настоятельно предпринимают попытки высадки десанта то на одну, то на другую комету. Обследование ядра кометы может дать уникальные сведения об иных мирах, их цивилизации, их возможностях. Кроме саркофага с останками инопланетянина, в ядре кометы, как полагает Михаил Петрович, могут оказаться послания жителей далеких миров с необходимыми сведениями о своей цивилизации. Или даже посылка – банк генетического фонда флоры и фауны из дальних миров. Тогда, по идее, из полученных ДНК можно методами, описанными хотя бы в романе Майкла Крайтона «Парк Юрского периода», вырастить на Земле инопланетные существа…

Ну а если серьезно, то среди органических соединений в кометах в самом деле могут быть нуклеотиды различных типов – простейшие «кирпичики» для строительства цепочек нуклеиновых кислот ДНК и РНК, в которых, как известно, содержится вся программа развития живой клетки.

Таким образом, на кометах вполне могут размещаться замороженные «заготовки» живой клетки. Стоит ей попасть в подходящую среду, например в теплый водоем, – и небесный переселенец оживает.

Кстати, возможность межзвездных путешествий органического вещества на кометном «транспорте» открывает заманчивые перспективы и перед человечеством. Люди смогут заселять далекие миры тем же способом, как когда-то была заселена Земля.

Пришло время отдавать долг, передавать эстафету по наследству. Хоть сегодня отправляй биосубликоны на соседние планеты – только бы подыскать условия для оживления. Но параметры можно задать кибернетической системе, которая сама выберет подходящее место для «разгрузки рефрижераторов». Длительности многих человеческих жизней не хватит для полета даже к ближайшей звезде. Зато биосубликоны успешно долетят.

…Представьте, что было бы, если б каждое поколение людей начинало с нуля. То есть, не пользуясь опытом предков, принималось заново изобретать все самостоятельно. Этак, пожалуй, мы до сих пор ходили бы в звериных шкурах, жили в пещерах и дубинами отбивались от всяких напастей…

Человечество вырвалось из каменного века прежде всего благодаря умению сохранять, размножать и совершенствовать знания, обретенные предками.

Поначалу эти знания передавались, что называется, из уст в уста, из рук в руки. Так появились, кроме всего прочего, многочисленные легенды, мифы, предания, былины. Потом наиболее важные данные стали записывать – летописи, хроники былых лет, рукописи и поныне являются важнейшими источниками знаний о прошлом.

Однако много ли их сохранилось? Например, Кумранские рукописи или летописи Мертвого моря, которым более 2000 лет – скорее исключение, чем правило. Они уцелели лишь благодаря случайному стечению обстоятельств – рукописи долгое время находились в сухой пещере, где тысячелетиями сохранялась одна и та же температура, влажность и т. д.

Как зеницу ока берегут историки и те папирусные свитки, что дошли до нас со времен фараонов. Рукописи, к сожалению, вопреки расхожему мнению, все же горят. Тому свидетельство хотя бы пожар в знаменитой Александрийской библиотеке или исчезнувшая к огне рукопись «Повести о полку Игореве», дошедшая до нас лишь в пересказах.

Нет достоверных свидетельств и об Атлантиде, никто из наших современников не видел рукописей Платона или чертежей Архимеда – сами их имена сохранились в истории лишь благодаря упоминаниям о них более поздними авторами…

Положа руку на сердце, приходится признать, что и все ныне существующие носители знаний – книги, дискеты, компакт-диски, пленки и т. д. – тоже не очень надежны; все они могут быть легко повреждены или уничтожены огнем, водой или микробами. Вспомните хотя бы, сколько шума и тревог было в конце прошлого века по поводу «ошибки 2000», которая грозила вывести из строя все компьютеры, могла обернуться многомиллиардными убытками…

Впору хоть снова переходить на вавилонскую клинопись или, подобно древним, выбивать надписи на камне. Однако время точит и каменные плиты – это очевидно хотя бы по облику египетских пирамид. Да и вавилонские глиняные таблички уцелели далеко не все.

Остается, кажется, лишь завести этакие металлические скрижали, например из золота, не поддающегося коррозии. Не случайно именно на пластинке из драгоценного сплава выбито послание к инопланетянам, отправленное в космос на борту зонда «Пионер». Но тогда уж поистине каждое слово – на вес золота…

В общем, в поисках долговечного, надежного, компактного и дешевого носителя информации американские исследователи недавно обратили внимание на… бактерии. Они заметили, что микроорганизмы способны пережить любые катаклизмы и временные периоды. В коллекциях исследователей ныне есть микроорганизмы, добытые из саркофагов египетских фараонов, а то и благополучно «продремавшие» в вечных льдах Антарктиды многие миллионы лет!

Попав же в благоприятные условия, споры таких бактерий тут же пускаются в рост, начинают активно размножаться. При этом у них есть любопытная особенность: дочерние микроорганизмы зачастую абсолютно идентичны своим родителям, являются своего рода их клонами. А следовательно, если в их ДНК заложить некую информацию, то, даже неоднократно переходя по наследству, она останется неизменной.

Чтобы проверить возможность использования бактерий в качестве носителей информации, сотрудники Тихоокеанской северо-западной национальной исследовательской лаборатории США закодировали текст популярной песенки «Its a Small World» в четырех «буквах» – основаниях ДНК. Потом они создали искусственные белковые нити, на которых записали фрагменты песенки. А готовую ДНК внедрили в бактерии Deinococcus radiodurans, которые считаются наиболее жизнестойкими микроорганизмами на Земле; недаром их название переводится как «устойчивые к излучению».

Эти микроорганизмы способны выживать в самых неблагоприятных условиях, переносить высокую температуру, обезвоживание, а также ультрафиолетовое и радиоактивное излучение в дозах, в тысячу раз превышающих смертельные для человека. К тому же они обладают редким свойством ремонтировать свою ДНК после мутации, что поможет сохранить информацию в первозданном виде.

Запись текста на бактерию прошла удачно. Ученым даже удалось, снабдив начало и конец зашифрованной песни специальными метками, обмануть Deinococcus, которая могла принять «нововведение» за вирус и уничтожить его.

Этой работой тут же заинтересовались криптологи. Ведь теперь получается, что с помощью ДНК можно зашифровать не только слова безобидной песенки, но и, скажем, шпионские донесения… И поди-ка догадайся, в какой живой клетке насекомого или, скажем, цветка помещено такое послание!

Ну а самих исследователей проведенные работы навели еще вот на какую мысль. Так, быть может, какие-то из этих древних бактерий, следы которых и поныне обнаруживаются в метеоритах, содержат заодно и какие-то послания от иных цивилизаций, закодированные в ДНК?! А если это даже и не так, то мы и сами теперь можем отправить в космос послание, закодированное в ДНК бактерий…

Правда, для того, чтобы осуществить обе идеи, исследователям из Вашингтона и их коллегам предстоит решить еще одну проблему. До сих пор колония бактерий с текстом существовала отдельно от своих простых собратьев. А что будет, если смешать эти «помеченные» бактерии с их собратьями? Не исказится ли со временем генетический текст послания? И как извлечь информацию из смешанной колонии? Впрочем, исследователи вскоре надеются решить и эти проблемы.

Теперь самое время вернуться к вирусам, о которых мы говорили выше. Как уже говорилось, компьютерный вирус – это возможность для хакера подправить что-то в программе соседа по своему усмотрению.

А что если такой возможностью пользуются и представители иных миров? И направляют нам с вирусами, едущими на астероидах и кометах в качестве бесплатного приложения, некие шифрованные послания, которые приносят нам не только болезни типа гриппа, но и некие исправления генетического кода.

И, скажем, дети поколения индиго, о которых ныне столько разговоров, – это один из результатов действия такой «поправки», призванной улучшить род человеческий…

В общем, по-моему, нельзя исключить возможности и того, что кометы – вполне осмысленный привет человечеству от далеких миров, удобный способ передавать биологическую информацию.

Но как же узнать, что посылают нам далекие братья по разуму в очередных кометах? Узнать можно. Чтобы микроорганизм действительно «вылупился из ледяного яйца», в составе кометного льда должен быть фосфор. Спектры излучения светящихся хвостов – своеобразные визитные карточки комет. Пока фосфора в них не находили. Зато замечали близкую по химическим свойствам серу. Однако атмосферная толща сильно искажает картину. Начни анализировать спектрограмму в космосе – и, вполне вероятно, отыщется фосфор.

Такую гостью нужно встречать по-особому за пределами земной атмосферы. Хотя бы в интересах безопасности человечества. Ведь комета, как уже говорилось, может принести очередную эпидемию. Оживив биосубликон-пробу скажем, на борту орбитальной исследовательской станции, можно предупредить Землю: движется грипп. И заблаговременно принять меры – в будущем, допустим, ввести сыворотку прямо в верхние слои атмосферы. Такая прививка всей планете сразу уничтожит пандемию еще в зародыше. Кроме того, кто знает, космическая «почта» ведь может принести посылку с чем-либо поинтересней, чем тривиальный грипп?..

Так что, как видите, у человечества есть немало причин, чтобы весьма пристально следить за «небесными камнями» – метеоритами, астероидами и кометами, которых, как выяснилось, довольно-таки часто заносит в окрестности нашей планеты. Вот я заканчиваю писать эти строки, а по радио говорят, что ученые зафиксировали очередной астероид размерами с трехэтажный дом. К счастью, он только что просвистел мимо. А куда занесет следующего?..

Эпилог