3x – 2y = 4
x + 5y = 7,
они бы выложили в виде двух колонок на столе: одно с числами 3 (красные), 2 (черные), 4 (красные) и другое – 1 (красная), 5 (красные), 7 (красные).
Красно-черная система обозначения не приводит нас к отрицательным числам, это пока всего лишь операция вычитания. Однако она уже близка к самой «чжэн фу шу» – концепции положительных и отрицательных чисел. Здесь отрицательное число представлялось с использованием того же набора палочек, что и для положительных, с дополнительной отметкой в виде косой палочки над цифрой.
Уравнения в китайском стиле. Серыми изображены красные палочки
Согласно Диофанту, все числа могут быть только положительными. Он отвергал возможность существования отрицательных решений для уравнений. Но индийские математики считали отрицательные числа очень удобными для обозначения долгов в финансовых подсчетах: задолжать кому-то некоторую сумму в финансовом смысле считалось худшим вариантом, чем вообще не иметь денег. Ясно, что долг должен быть меньше 0. Если у вас было три фунта, а вы заплатили два, то у вас осталось 3–2 = 1 фунт. Иными словами, если у вас был долг два фунта, а вы получили три, ваша чистая прибыль составляет –2 + 3 = 1. Бхаскара замечает, что если конкретная задача имеет два решения, 50 и –5, то второе его категорически не устраивает: «Его не следует учитывать, потому что люди не приемлют отрицательных решений».
Несмотря на эти препятствия, мало-помалу отрицательные числа завоевывали себе место. И в реальных вычислениях их необходимо было как-то обозначать. Иногда они ставили ученых в тупик, иногда показывали долги, иногда обозначали движение вниз, а не вверх. Но какой бы ни была интерпретация, они превосходно служили арифметике и оказались так полезны в подсчетах, что глупо было бы от них отказываться.
Арифметика бессмертна
Мы так привыкли к нашей числовой системе, что готовы считать ее единственно возможной, по крайней мере единственной удобной. Но она развивалась тяжело, со множеством тупиковых ветвей, на протяжении тысячелетий. А еще у нее было много альтернатив, даже в таких ранних культурах, как майя. Иные обозначения для цифр 0–9 остаются в ходу в ряде стран. Да и в наших компьютерах внутренняя система счисления двоичная, а не десятичная: специально встроенные в них программы преобразуют числа в десятичную форму, прежде чем выводят их на экран или принтер.
Замечательная система счисления, основанная вместо 10 на 20 символах, была изобретена народом майя, населявшим Южную Америку около 1000 г. н. э. В двадцатеричной системе символы, эквивалентные нашим цифрам 347, будут обозначать следующее:
3 × 400 + 4 × 20 + 7 × 1
(поскольку 20 × 20 = 400), что равно 1287 в нашей системе обозначения. Настоящие символы майя показаны сверху.
Скорее всего, переход ранних цивилизаций к десятичной системе обусловлен тем, что у человека на руках десять пальцев. Тогда логично предположить, что 20 цифр майя соответствуют 20 пальцам на руках и ногах.
Наша жизнь теперь неотделима от компьютеров, так стоит ли по-прежнему учить детей арифметике? Да, и по многим причинам. Кому-то надо уметь конструировать и собирать калькуляторы и компьютеры и обучать их командам. Для этого необходимо понимать арифметику: как и почему она работает, а не только как ею пользоваться. И если ваши арифметические способности сводятся к чтению чисел на экране калькулятора, скорее всего, вы и глазом мигнуть не успеете, как прозеваете чек с ошибкой в супермаркете. Без владения базовыми арифметическими действиями вы останетесь профаном во всем, что касается математики. Нашей цивилизации очень скоро придет бесславный конец, если мы начнем преподавать арифметику выборочно: ведь нельзя определить по ребенку в возрасте пяти лет, станет ли он инженером или ученым или хотя бы банковским служащим либо бухгалтером.
Конечно, раз вы уже владеете всей премудростью арифметики, использование калькулятора сэкономит кучу времени и сил. И всё же, как вы не станете учиться ходить, опираясь на костыль, так вы не сможете постичь законы взаимодействия чисел, полагаясь только на калькулятор.
Мы постоянно пользуемся арифметикой и в быту, и в торговле, и в науке. До появления электронных калькуляторов и компьютеров мы вдобавок делали подсчеты вручную: при помощи ручки и бумаги, или таких простых приспособлений, как счеты, или арифметических таблиц готовых расчетов (например, таблиц сложения и умножения). Сегодня большинство арифметических действий происходит вне поля зрения, в электронном виде: например, в супермаркете вам выдадут чек с суммой покупки и сдачу, а банк сообщит об изменении суммы на счете – без специального обращения к специалистам. Общее «количество» арифметических действий, происходящих в повседневной жизни каждого из нас, весьма впечатляет.
Арифметические подсчеты в компьютере происходят не в десятичном формате. Используется двоичная система. Это значит, что вместо наших единиц, десятков, сотен, тысяч и т. д. компьютеры используют 1, 2, 4, 8, 16, 32, 64, 128, 256 и т. д. – степени двойки, где каждое число вдвое больше предыдущего (именно поэтому карта памяти для вашей цифровой камеры имеет нелепую на первый взгляд емкость в 256 мегабайт). Для компьютера число 100 будет разбито по степеням двойки как 64 + 32 + 4 и сохранено в виде 1100100.
Глава 4. Соблазнение неизвестным
Использование символов в математике выходит далеко за пределы обозначения цифр. Это становится ясно даже при поверхностном знакомстве с любым математическим текстом. Первый важнейший шаг к сложным символьным выкладкам, за пределы изображения цифр, был совершен в области решения задач. Многие древние тексты, вплоть до периода Старого Вавилона, рассказывают читателям о некоем неизвестном количестве, а потом предлагают его определить. Стандартная форма задачи (в литературном изложении) на вавилонских табличках такова: «Я нашел камень, но не знаю его веса». Предоставив дополнительную информацию – «когда я добавил второй камень в половину веса первого, их общий вес составил 15 джин», – ученику предлагают вычислить вес исходного камня.
Алгебра
Такие задачи дали толчок к развитию области знаний, которую мы называем алгеброй: где числа представлены буквами. Неизвестная величина по традиции называется x, а сопутствующие условия излагаются в виде математических формул. Ученикам предлагается с помощью стандартных методов вычислить значение x по формулам. Например, упомянутую выше вавилонскую задачу мы запишем в виде уравнения x + 1/2x = 15, и мы должны узнать, как вычислить x = 10.
На школьном уровне алгебра – ветвь математики, в которой неизвестные числа обозначены буквами, арифметические действия – специальными символами, а главная задача – вывести неизвестные из уравнений. Типовая задача школьной алгебры – поиск x, заданного в уравнении x2 + 2x = 120. Это квадратное уравнение имеет одно положительное решение, x = 10.
Здесь x2 + 2x = 102 + 2 × 10 = 100 + 20 = 120. Также оно имеет одно отрицательное решение, x = –12.
Тогда x2 + 2x = (–12)2 + 2 × (–12) = 144 – 24 = 120. Древние принимали положительные результаты, но не отрицательные. Мы признаем оба варианта: во многих задачах отрицательные числа имеют реальное значение и соответствуют физически возможным ответам. Вдобавок математика становится проще, если принять их существование.
В продвинутой математике использование символов для обозначения чисел сводится к ничтожной части этой области знаний, отражающей ее первые шаги. Алгебра рассказывает о свойствах выражений и уравнений с использованием буквенных символов, и речь уже о структуре и форме, а не только о числе. Этот более широкий взгляд развился в период, когда математики пошли дальше простой алгебры школьного уровня. Вместо того чтобы пытаться решать конкретные уравнения, они предпочли всмотреться в глубинные структуры процесса решения.
Как развивалась алгебра? Сначала это были задачи и методы. Со временем она приобрела символическую систему обозначений, которую мы считаем ее главным достоинством. Было много систем обозначений, но постепенно одна вытеснила конкурентов. Само название «алгебра» тоже возникло в процессе, и оно имеет арабские корни (об этом говорит начальное «аль», арабский эквивалент артикля the, что и указывает на происхождение).
Табличка из Старого Вавилона с клинописной записью алгебро-геометрической задачи
Уравнения
То, что мы сейчас называем решением уравнений (когда неизвестная величина должна быть найдена на основе имеющейся информации), почти так же старо, как и арифметика. Есть косвенные доказательства тому, что вавилоняне умели решать весьма сложные уравнения еще в 2000 г. до н. э., и прямые свидетельства решения несложных задач в виде клинописных табличек, датируемых примерно 1700 г. до н. э.
Сохранившаяся часть таблички YBC 4652, из периода Старого Вавилона, содержит 11 простых задач для решения, а по сопроводительному тексту можно понять, что изначально их было двадцать две. Вот типичный вопрос:
«Я нашел камень, но не знаю его вес. После того как я взял его вес шесть раз, добавил 2 джина и добавил одну треть от одной седьмой [этого нового веса], умноженной на 24, я взвесил его. В результате получилось 1 ма-на. Сколько весил исходный камень?»
Вес 1 ма-на равен 60 джинов.
В современных обозначениях мы примем за x вес исходного камня в