Укрощение бесконечности. История математики от первых чисел до теории хаоса — страница 16 из 66

10x, удовлетворяющий формуле

x = 10L.

Тогда

log10x y = log10x + log10y,

и всё становится намного проще. Чтобы найти x, достаточно сложить логарифмы x и y и затем найти антилогарифм результата.

Непер скончался до того, как эти идеи получили распространение, в 1617 г., когда только-только увидела свет его «Рабдология», посвященная счетным палочкам. Его авторский способ вычисления логарифмов, «Описание удивительной таблицы логарифмов» (Mirifici Logarithmorum Canonis Decriptio), издали два года спустя. Бригс взят на себя задачу составить таблицу «бригсовских» (десятичных, с основой 10) логарифмов. Он начал с равенства log10 10 = 1 и последовательно брал квадратные корни. В 1617 г. он опубликовал таблицы Logarithmorum chilias prima («Первая тысяча логарифмов»), с 14-значными логарифмами для целых чисел от 1 до 1000. Изданный в 1624 г. труд Arithmetica logarithmica содержал таблицы десятичных 14-значных логарифмов для целых чисел от 1 до 20 000 и от 90 000 до 100 000.

ЧТО ТРИГОНОМЕТРИЯ ДАЛА ИМ

«Альмагест» Птолемея заложил основы всех последующих исследований движения планет, прежде всего позволил Иоганну Кеплеру сделать вывод об эллиптической форме их орбит. Наблюдения за движением планет осложнялись относительным движением самой Земли, неизвестным фактором во времена Птолемея. Даже если бы планеты двигались с единой скоростью и строго по окружностям, проход Земли вокруг Солнца представлял бы собой головоломную комбинацию двух отдельных круговых движений, чья точная модель выглядела бы гораздо сложнее, чем у Птолемея. По схеме эпициклов Птолемея центр одной окружности вращается по другой окружности. Эта окружность, в свою очередь, может вращаться вокруг следующей, и т. д. Геометрия равномерного движения по окружности естественно подчиняется тригонометрическим функциям, и впоследствии астрономы использовали это свойство для вычисления путей небесных тел.

Схема эпицикла. Планета P равномерно вращается вокруг точки D, которая, в свою очередь, равномерно вращается вокруг точки С


Идея росла, как снежный ком. Джон Спайделл вычислил логарифмы тригонометрических функций (таких как log sin x) и опубликовал свои «Новые логарифмы» в 1619 г. Швейцарский мастер-часовщик Йост Бюрги опубликовал свой труд о логарифмах в 1620 г. и вполне мог сам развить эту идею еще в 1588 г., задолго до Непера. Но история математики зиждется на том, что ученые успели опубликовать – буквально сделать доступным для публики, – а идеи, остававшиеся под спудом, не могли повлиять на развитие науки в целом. В итоге первенство (возможно, по праву) отдается смельчакам, которые запечатлели свои открытия в печатных трудах или по крайней мере в активной переписке (исключение составляют люди, издававшие идеи других как собственные, не имея на то права. Как правило, они остаются за кулисами).

Число e

В тесной связи с предложенной Непером версией логарифмов всегда рассматривается одно из важнейших чисел в математике, известное нам под обозначением e. Его величина приблизительно равна 2,71828. Оно получится, если мы попытаемся перейти от логарифмов к геометрической прогрессии со знаменателем чуть больше 1. Это приведет к выражению (1 + 1/n)n, где n – очень большое целое число, и чем оно больше, тем ближе это выражение к одному определенному числу, которое мы обозначаем е.

Эта формула предполагает, что у логарифма существует натуральное основание, причем это не 10 или 2, а именно е. Натуральный логарифм числа x – это число у, которое удовлетворяет условию x = ey. Сегодня математики натуральный логарифм записывают так: y = ln x. Иногда математики обозначают основание е натурального логарифма: y = loge x, но в школьном курсе математики его обычно опускают, поскольку для высшей математики и науки важен именно натуральный логарифм. Десятичные логарифмы наиболее удобны для вычислений в десятичной системе, но в фундаментальной математике важнее натуральные.

Выражение ex называется экспонентой x, и его по праву можно назвать одним из основополагающих понятий математики. Число e – одно из тех необычных чисел, что так любят математики, и играет огромную роль. Другим таким числом, несомненно, является π. Это верхушка айсберга – потому что есть еще много других знаменитых чисел. Их также по праву можно считать самыми важными и особенными, встречающимися повсюду на бескрайнем математическом ландшафте.

Что бы мы без них делали?

Наверное, невозможно переоценить долг человечества перед неведомыми предками, изобретшими логарифмы и тригонометрию и потратившими годы на составление численных таблиц. Их усилия обеспечили качественно иной взгляд на мир, не говоря уже о путешествиях по миру и торговле, получивших методы точной навигации и картографии. На тригонометрических вычислениях основана вся геодезия. Даже сейчас, когда геодезисты пользуются лазерными приборами и производят вычисления с помощью сверхскоростных электронных чипов, концепции построения самих лазеров и чипов уходят корнями в ту самую тригонометрию, что не давала покоя математикам древних Индии и Аравии.

Логарифмы позволили умножать любые числа быстро и точно. Двадцать лет, потраченных на составление численных таблиц одним математиком, сэкономили десятки тысяч рабочих человеко-лет его последователям, и те смогли полностью посвятить свое время трудоемкому научному анализу. Наука не смогла бы продвинуться дальше без этого метода. И невозможно подсчитать выгоду от него.

ЧТО ТРИГОНОМЕТРИЯ ДАЕТ НАМ

Тригонометрия играет главную роль во всем, что касается картографии, – от строительной площадки до континентов. Точно измерить углы относительно просто, а вот оценить так же точно расстояние – иная задача, особенно для пересеченной местности. Из-за этого геодезисты начинают работу с максимально точного измерения длины базовой линии, представляющей расстояние между двумя определенными точками. Затем они строят сеть треугольников и используют величины их углов плюс тригонометрию, чтобы вычислить длины сторон. Так можно построить очень точную карту любой области. Это процесс получил название триангуляции. Для проверки точности данных после составления первой карты весь процесс может повториться с использованием другой базовой линии.

Триангуляция Южной Африки Лакайля


Приведенный здесь рисунок – не более чем пример: это знаменитая карта Южной Африки, составленная в 1751 г. известным астрономом аббатом Никола Луи де Лакайлем. Его главной целью было создание каталога звезд Южного полушария, но для получения точных результатов ему пришлось начать с измерения дуги меридиана земного шара. Для этого он провел триангуляцию для территории к северу от Кейптауна.

Его результат позволил предположить, что кривизна земного шара меньше в северных широтах, чем в южных: удивительное для того времени явление, подтвержденное дальнейшими измерениями. Земля действительно слегка напоминает по форме грушу. Каталог, составленный ученым при помощи рефракторного телескопа, оказался поразительно точным: в нем обозначено 15 из известных сейчас 88 созвездий и перечислено 10 тыс. звезд.

Глава 6. Кривые и координаты

Геометрия – это алгебра – это геометрия

Мы привычно делим математику на такие самостоятельные области, как арифметика, алгебра, геометрия и т. д., но это скорее дань извечному стремлению человечества всё разложить по полкам. Ведь в математике нет строгих и непреодолимых границ между вроде бы независимыми областями, и проблема, на первый взгляд касающаяся одной сферы, может быть решена методами, изобретенными в другой. Многие великие прорывы в науке совершались именно благодаря неожиданно открытой связи между казавшимися независимыми темами.

ФермА

Греческие математики проследили такие связи между теоремой Пифагора и иррациональными числами, а Архимед использовал механические аналогии и методы для определения объема шара. Истинное значение и важность таких взаимно плодотворных пересечений стали очевидны в короткий период на десять лет раньше и позже 1630 г. За этот короткий отрезок истории два выдающихся математика успели открыть важную связь между алгеброй и геометрией. Фактически они показали, что каждую из этих областей можно преобразовать в другую с помощью координат. Вся геометрия Евклида и его последователей может быть сведена к алгебраическим вычислениям. А вся алгебра может быть интерпретирована в терминах геометрии: кривых и поверхностях.

Кажется, что такие связи могут сделать одну из областей излишней. В самом деле, если всю геометрию можно заменить алгеброй, зачем она нужна? Однако каждая область имеет свою специфическую точку зрения, подчас гораздо более проницательную и плодотворную. Иногда ученому лучше мыслить геометрически, а иногда – алгебраически, чтобы решить задачу.

Первым ученым, создавшим систему координат, был Пьер де Ферма. Он прежде всего известен благодаря своей теории чисел, но также изучал другие вопросы математики, включая вероятность, геометрию и приложение к оптике. Примерно в 1620 г. Ферма, пытаясь понять геометрию кривых линий, начал по сохранившимся до его времени крупицам сведений восстанавливать утраченный труд, названный когда-то Аполлонием «Плоские места». Закончив это, Ферма продолжил собственные изыскания, описанные им в 1629 г., но изданные только через 50 лет в книге «Введение к теории плоских и пространственных мест». Здесь он подробно рассмотрел преимущества преобразования геометрических понятий в алгебраические термины.