Многие уверены, что единственный способ сделать открытие в математике – изобрести новые числа. И это убеждение ложно: многие разделы математики вообще не имеют дела с числами, и, во всяком случае, цель любого исследования – изобретение новых теорем, а не чисел. Однако порой появляются и «новые числа». И одно из таких изобретений – «невозможное», или «мнимое», число – коренным образом изменило облик математики, наделив ее поистине невероятной мощью. Этим числом стал квадратный корень из –1. Древним математикам сама эта идея показалась бы чушью, потому что в их времена квадрат любого числа мог быть только положительным. А значит, отрицательные числа не могут иметь квадратных корней. Но попробуйте представить, что они есть. Что тогда будет?
Математикам понадобилось очень много времени, чтобы понять: числа – не более чем искусственно созданные изобретения человеческого разума. Они незаменимы для постижения окружающего мира, но в то же время являются его частью не более, чем любой из треугольников Евклида или вычислительная формула. На протяжении истории нашей культуры математики противились этой философской проблеме, пока не убедились, что мнимые числа незаменимы, полезны и даже в чем-то схожи с более привычными нам действительными.
Проблемы с кубическим уравнением
Революционные идеи в математике редко зарождаются в простом и на поверку очевидном контексте. Чаще всего им необходима сложная почва. Так вышло с квадратным корнем из –1. Сейчас мы обычно вводим это число в квадратном уравнении x2 + 1 = 0, решением для которого становится √–1 – что бы это ни значило. Первыми математиками, задавшимися вопросом, имеет ли это хоть какой-то смысл, стали алгебраисты эпохи Возрождения, пришедшие к проблеме квадратных корней из отрицательных чисел несколько необычным путем: в поисках решений для кубических уравнений.
Вспомним, как дель Ферро и Тарталья нашли решение для кубических уравнений, позже опубликованных Кардано в его труде «Великое искусство». В современных символах решение для кубического уравнения x3 + ax = b выглядит так:
Математики эпохи Возрождения описали это выражение словами, но методика вычислений была точно такой же.
Иногда эта формула работает безупречно, но порой чревата проблемами. Кардано заметил, что, когда формулу применяют к уравнению x3 = 15x + 4, с явным решением x = 4, результат выглядит так:
Но это выражение кажется не имеющим смысла, ведь у числа –121 не существует квадратного корня. Кардано зашел в тупик и написал Тарталье, попросив его объяснить это недоразумение, но Тарталья не уловил сути вопроса, и его ответ был невразумителен.
Решение проблемы нашел Рафаэль Бомбелли в своем трехтомном труде «Алгебра», изданном в Венеции в 1572 г. и в Болонье в 1579 г. Бомбелли не устраивали загадки и недоговоренности «Великого искусства» Кардано, и он взял на себя труд написать нечто более ясное. Он стал оперировать этим «нескладным» квадратным корнем, как если бы это было обычное число, отмечая:
и выводя из этого любопытную формулу:
Точно так же Бомбелли вывел формулу:
Теперь мы можем записать сумму двух кубических корней как
Итак, этот странный метод всё же привел нас к верному ответу – безупречно целому числу, хотя нам и пришлось манипулировать «невозможными» величинами.
Да, это всё очень интересно, но работает ли это?
Мнимые числа
В поисках ответа на этот вопрос математикам пришлось найти надежные пути рассуждений о квадратных корнях из отрицательных чисел и способы вычислений с их использованием. Первые ученые, в том числе Декарт и Ньютон, считали эти мнимые числа верным признаком того, что у задачи нет решения. Если вам надо найти число, чей квадрат равен –1, то формальное решение является мнимым числом, а значит, решения не существует. Но вычисления Бомбелли предполагают, что только мнимостью здесь не ограничиться. Эти числа можно использовать для поиска решения, они показывают, что оно существует.
В 1673 г. Джон Валлис изобрел простой способ представлять мнимые числа в виде точек на плоскости. Он исходил из привычного метода построения действительных чисел в виде прямой, расставив на ней положительные числа по правую сторону и отрицательные по левую.
Затем он ввел еще одну прямую, под прямым углом к первой, и уже на ней расположил мнимые числа.
Это похоже на алгебраический подход Декарта к геометрии с использованием координатных осей. Только здесь на одной оси мы видим действительные числа, а на второй – мнимые. Валлис несколько иначе выразил эту идею: его версия скорее была ближе к подходу Ферма, чем напоминала систему координат Декарта. Но основной принцип тот же. Оставшаяся плоскость соотносится с комплексными числами, состоящими из двух частей: одна действительная, другая мнимая. В декартовой системе координат мы отмеряем действительную часть вдоль вещественной прямой, а мнимую – параллельно мнимой линии. Иными словами, число 3 + 2i будет отложено на три единицы вправо от начала координат и на две единицы вверх.
Линия действительных чисел
Идея Валлиса решила проблему придания смысла мнимым числам, но никому не пришло в голову обратить на это внимание. И всё же медленно, но верно идея распространялась на уровне подсознания. Все больше математиков переставали беспокоиться, что √–1 не может занять место на действительной прямой, и понимали, что он разместится где-то в более просторном мире комплексной плоскости. Но были и такие, кто отвергал саму идею: в 1758 г. некто Франсуа Дэви де Фонсене категорически утверждал в своем труде, что совершенно не имеет смысла представлять, будто мнимые числа формируют линию, расположенную под прямым углом к линии действительных чисел. Но всё же больше было таких, кто искренне приветствовал идею Валлиса, понимая ее важность.
Две дублирующиеся линии с действительными числами, расположенные под прямым углом
Идея, что комплексная плоскость позволяет расширить вещественную прямую и дать приют мнимым числам, подразумевалась в работе Валлиса, хотя ее объяснение было несколько туманным. Более ясное изложение мы находим у норвежца Каспара Весселя в издании от 1797 г. Вессель был землемером, он стремился прежде всего представить геометрию плоскости с помощью чисел. И наоборот: его идеи можно рассматривать как способ представления комплексных чисел в терминах планиметрии. Но он опубликовал свою работу только в Дании, и она оставалась под спудом почти целый век, пока ее не перевели на французский. Французский математик Жан-Робер Арган опубликовал такой же способ представления комплексных чисел в 1806 г., а Гаусс открыл независимо от них то же самое в 1811 г.
Комплексная плоскость по Весселю
Комплексный анализ
Если бы комплексные числа так и остались полезны только для алгебры, им было бы суждено оставаться отвлеченным научным курьезом, занимающим исключительно математиков. Но по мере роста интереса к исчислению, который принял строгую форму математического анализа, люди стали замечать, что действительно интересное слияние вещественного анализа с комплексными числами – точнее, комплексный анализ – не только возможно, но и желательно. Действительно, для многих задач это существенно.
Это открытие выросло из первых попыток обдумать существование комплексных функций. Самые простые функции, такие как возведение в квадрат или в куб, зависят только от алгебраических операций, поэтому было легко определить их для комплексных чисел. Чтобы возвести в квадрат комплексное число, необходимо умножить его само на себя, и тот же прием годится для действительных чисел. Квадратные корни из комплексных чисел немного каверзнее, но приносят нам приятную награду за потраченные силы: каждое комплексное число имеет квадратный корень. И действительно, любое такое число, не равное 0, имеет ровно два квадратных корня (положительный и отрицательный, равные по модулю). Так мы обогатили действительные числа новым числом i, вдобавок обеспечив –1 квадратным корнем и определив квадратные корни для любого числа в расширенной системе комплексных чисел. А как быть с синусами, косинусами, экспонентами и логарифмами? На этом этапе они особенно интересны, но и более головоломны. Особенно логарифмы.
Как и число i само по себе, логарифмы комплексных чисел тут же превратились в очередную проблему. В 1702 г. Иоганн Бернулли исследовал процесс интегрирования, применив его к обратным полиномам второй степени. Он нашел изысканный способ решения этой задачи, когда у квадратного уравнения есть два действительных корня: r и s. Теперь мы можем переписать это подынтегральное выражение, используя так называемые простейшие дроби:
что приводит нас к интегралу
A ln (x – r) + B ln (x – s).
А что, если квадратное уравнение не имеет действительного корня? Как, например, проинтегрировать величину, обратную x2 + 1? Бернулли понимал, что раз уж вы занялись алгеброй комплексных чисел, трюк с простейшей дробью сработает и здесь, только в этом случае r и s будут комплексными числами. Например:
а интеграл этой функции принимает форму:
1/2 ln (x + i) + 1/2 ln (x – i).
Этот финальный шаг не совсем удовлетворителен, поскольку требует определения логарифма комплексного числа. Возможно ли сделать корректным такое утверждение?
Бернулли считал, что можно, и благодаря этой идее добился потрясающего эффекта. Той же позиции придерживался и Лейбниц. Однако математические детали всё еще требовали доработки. К 1712 г. оба ученых сошлись в споре по самой сути такого подхода. Забудем про