Вот почему математикам всегда так важно доказательство.
Глава 14. Взросление алгебры
К 1860 г. теория групп перестановок была уже хорошо развита. Теория инвариантов – алгебраических выражений, которые не меняются, когда происходят некие изменения с переменными, – привлекла внимание к различным бесконечным множествам преобразований, таким как проективная группа всех проекций пространства. В 1868 г. Камиль Жордан изучал группы движений в трехмерном пространстве, и в ходе его исследований два направления слились в одно.
Изощренные концепции
Начала появляться новая алгебра, для которой объектами изучения стали не неизвестные числа, а более изощренные концепции: перестановки, преобразования, матрицы. Прошлогодние процессы с наступлением нового года уходили «в архив». Правила алгебры, долгое время остававшиеся незыблемыми, всё чаще нуждались в изменении, чтобы удовлетворить нужды новых структур. Наряду с группами математики взялись за изучение структур так называемых колец и полей, не говоря уже о разных новых видах алгебр.
Стимулы для этого изменения взгляда на алгебры пришли из уравнений в частных производных, механики и геометрии. Это обусловило развитие групп Ли и алгебры Ли. Другим источником вдохновения была теория чисел: здесь алгебраические числа можно было использовать для решения диофантовых уравнений, понимания законов взаимности и даже атак на Великую теорему Ферма. И кульминацией всего происходящего стало доказательство Великой теоремы Ферма Эндрю Уайлсом в 1995 г.
Ли и Клейн
В 1869 г. норвежский математик Софус Ли подружился с немецким математиком Клейном. Они оба интересовались линейной геометрией – ответвлением проективной геометрии, открытым Юлиусом Плюккером. Ли высказал очень оригинальную идею: мол, теория Галуа для алгебраических уравнений должна иметь аналог для дифференциальных уравнений. Алгебраическое уравнение может быть решено в радикалах, только если обладает необходимыми свойствами симметрии, – это так называемая разрешимая группа Галуа. Ли предположил, что и дифференциальное уравнение может быть решено классическими способами, только если оно остается неизменным в непрерывном семействе преобразований. Ли и Клейн работали над вариантами этой идеи в 1869–1870 гг. Кульминацией стало описание геометрии через инварианты групп, данное Клейном в 1872 г. в его «Эрлангенской программе».
Она стала результатом нового подхода к евклидовой геометрии – с точки зрения симметрии. Жордан уже указал, что симметрии евклидовой плоскости представлены разного рода движениями без деформации тела: переносом, когда плоскость скользит в каком-то направлении; вращениями, которые поворачивают ее вокруг некой фиксированной точки; отражениями, которые переворачивают ее вокруг неподвижной линии, и, что менее очевидно, зеркальными отражениями, которые отражают и затем переносят ее в направлении, перпендикулярном линии зеркала. Эти преобразования образуют евклидову группу, и они жесткие – в том смысле, что они не меняют расстояния между точками. Соответственно, они не меняют и углы. Теперь длины и углы являются основными понятиями евклидовой геометрии. И Клейн понял, что это и есть инварианты для евклидовой группы: величины, которые не меняются, когда группа подвергается преобразованию.
Клейн родился в Дюссельдорфе в элитарной семье: его отец был секретарем главы прусского правительства. Он собирался стать физиком и отправился учиться в Университет Бонна, но устроился подрабатывать в лаборатории Юлиуса Плюккера. Тот вроде бы должен был заниматься прикладной математикой и экспериментальной физикой, но его интересы сосредоточились на геометрии, и Клейн попал под его влияние. Диссертация Клейна, датированная 1868 г., была посвящена линейной геометрии, ее приложениям к механике.
В 1870 г. Клейн работал вместе с Ли над теорией групп и дифференциальной геометрией. В 1871 г. он совершил открытие, что неевклидова геометрия – это геометрия проективной поверхности с определенным коническим сечением. Этот факт весьма откровенно и бескомпромиссно доказал, что неевклидова геометрия логически обоснована, точно так же как и евклидова. Этот довод практически положил конец дискуссии о статусе неевклидовой геометрии.
В 1872 г. Клейн стал профессором университета в Эрлангене, и в своей «Эрлангенской программе» 1872 г. он унифицировал практически все известные в то время виды геометрии и четко описал связи между ними, рассматривая геометрию через инварианты группы преобразований. Так геометрия стала ответвлением теории групп. Клейн написал статью по этой теме для своей торжественной речи (при утверждении его профессором), но так и не смог обнародовать ее в тот день. Сочтя Эрланген недостаточно продвинутым местом, ученый в 1875 г. перебрался в Мюнхен. Он женился на Анне Гегель, внучке великого философа. Через пять лет он переехал в Лейпциг, где расцвел его талант математика.
Клейн был уверен, что лучшая его работа была по теории функций комплексного переменного, где он провел глубокое исследование инварианта функций для различных групп преобразований комплексной плоскости. Особенно подробно в этом контексте он развил теорию простой группы порядка 168. В решении проблемы униформизации комплексных функций он вступил в соперничество с Пуанкаре, но резко подорвал здоровье – возможно, из-за слишком напряженной борьбы.
В 1886 г. Клейн занял должность профессора в Университете Гёттингена и сосредоточился на административной деятельности – учреждении самой внушительной в мире математической школы. Он возглавлял ее вплоть до ухода на пенсию в 1913 г.
Если вам известны евклидовы группы, вы сможете вычислить их инварианты и также из них получить евклидову геометрию. То же относится и к другим видам геометрии. Эллиптическая подразумевает изучение инварианта группы движений в пространстве с положительной кривизной, гиперболическая – инварианта группы движений в пространстве с отрицательной кривизной, проективная – изучение инварианта групп проекций и т. д. Точно так же, как координаты отражают связь алгебры с геометрией, инварианты выражают связь теории групп с геометрией. Каждый вид геометрии определяет группу всех преобразований, которые сохраняют соответствующие геометрические концепции. Верно и обратное: каждая группа преобразований определяет соответствующую геометрию, со своими инвариантами.
Клейн использовал эти взаимосвязи, чтобы доказать, что одни виды геометрии практически не отличаются от других, поскольку их группы идентичны, за исключением интерпретации. Более глубокий смысл этой идеи в том, что всякий вид геометрии определяется его симметрией. Есть лишь одно исключение – риманова геометрия поверхностей, чья кривизна может меняться от одной точки к другой. Она не совсем вписывалась в программу Клейна.
Группы Ли
Общие усилия Ли и Клейна привели Ли к открытию одной из самых важных идей в современной математике – идеи группы непрерывных преобразований, известной сейчас как группа Ли. Это концепция, совершившая революцию не только в математике, но и в физике, ведь группы Ли включают большинство самых важных видов симметрий физической Вселенной, для которой именно симметрия остается важнейшим организационным принципом – как для основополагающих философских взглядов на описание окружающего мира с помощью математических законов, так и для чисто технических расчетов.
Софус Ли создал теорию групп Ли на всплеске научной активности осенью 1873 г. Концепция групп значительно развилась со времени его ранних работ. В современных терминах группа Ли – структура, обладающая как алгебраическими, так и топологическими свойствами, тесно связанными между собой. Точнее говоря, это группа (некое множество) с операцией композиции, удовлетворяющей различным алгебраическим тождествам, особенно ассоциативному закону и топологическому многообразию (пространство, локально сходное с евклидовым, с несколькими фиксированными измерениями, которое может быть искривлено или еще как-то деформировано на глобальном уровне), с непрерывным законом композиции (малые изменения в элементах в итоге дадут малое изменение в результате). Концепция Ли была более конкретна: группа непрерывных преобразований со многими переменными. Он пришел к изучению таких групп преобразований в поисках теории разрешимости или неразрешимости дифференциальных уравнений, аналогично тому, как вышло у Галуа с алгебраическими уравнениями. Но его открытие обусловило великое множество математических приложений, причем изначально Ли нацеливался вовсе не на это.
Пожалуй, самым простым примером групп Ли является множество поворотов окружности. Любой из них однозначно определен углом от 0 до 360°. Это множество относится к группам, потому что композиция из двух поворотов также является поворотом – как сумма соответствующих углов. Это будет одномерное многообразие, потому что углы один к одному соответствуют точкам окружности, а небольшие дуги окружности – не более чем слегка искривленные отрезки той самой прямой, которая и является одномерным евклидовым пространством. Наконец, композиционный закон непрерывен, потому что малые изменения в углах в результате сложения дадут небольшое изменение их суммы.
Более любопытным примером будет группа всех поворотов в трехмерном пространстве с фиксированным началом координат. Каждый поворот здесь определяется осью – прямой, проведенной через начало координат в произвольном направлении, – и углом поворота вокруг этой оси. Для определения оси необходимы две переменные (скажем, долгота и широта точки, в которой ось встречается с соответствующей сферой с центром в начале координат) и третья переменная для определения угла поворота. Так, эта группа имеет размерность 3. В отличие от группы поворотов окружности, она некоммутативна: здесь результат объединения двух преобразований зависит от порядка их выполнения.