В 1873 г. после углубленной работы с ДУЧП Ли вернулся к теории групп преобразований, исследуя свойства бесконечно малых (инфинитезимальных) преобразований. Он показал, что такие преобразования непрерывной группы не являются замкнутыми относительно композиции, но обязательно замкнуты относительно новой операции, названной скобкой Ли и обозначаемой как [x,y]. В матричной записи это выражение называется коммутатором xy − yx для x и y. Полученная в результате алгебраическая структура известна нам как алгебра Ли. Вплоть до 1930-х гг. термины «группа Ли» и «алгебра Ли» не использовались: вместо этого говорилось о непрерывной и инфинитезимальной группах соответственно.
Существуют сильные взаимосвязи между структурами группы Ли и алгебры Ли, которую сам ученый описал в трехтомном труде «Теория групп преобразований», созданном совместно с Фридрихом Энгелем. Соавторы подробно обсудили четыре классических семейства групп, два из которых – группы поворотов в n-мерном пространстве для четного или нечетного n. Эти два случая были выбраны из-за своих выраженных особенностей. Например, при нечетном числе измерений поворот требует фиксированной оси, а в пространстве с четным числом измерений она не обязательна.
Киллинг
Очередной значительный шаг в развитии теории групп сделал Вильгельм Киллинг. В 1888 году он заложил основу теории структуры для алгебр Ли, в частности создал классификацию всех простых алгебр Ли – основных строительных блоков, из которых собираются все остальные алгебры Ли. Киллинг начал с известной структуры для самой понятной простой алгебры Ли – специальной линейной алгебры sl(n) для n ≥ 2. Начнем со всех матриц размера n × n с комплексными числами при условии, что скобка Ли для двух матриц A и B равна AB − BA. Эта алгебра Ли не только простая, но и подалгебра sl(n). Для всех матриц, чьи диагональные значения в сумме дают 0, она действительно простая. Она имеет размерность n2 − 1.
Ли знал структуру этой алгебры, и он показал, что любая простая алгебра Ли имеет схожую структуру. Замечательно, что он смог это доказать, исходя лишь из знания того, что алгебра Ли простая. Его метод состоял в привязке любой простой алгебры к геометрической структуре под названием «система корней». Он использовал методы линейной алгебры для изучения и классификации системы корней, а затем выводил структуру соответствующей алгебры Ли от этой системы. Значит, классификация возможной геометрии системы корней равнозначна классификации простых алгебр Ли.
Результат работы Киллинга трудно переоценить. Он доказал, что простые алгебры Ли укладываются в четыре бесконечных семейства, ныне известных как An, Bn, Cn и Dn. Вдобавок есть пять исключений: G2, F4, E6, E7 и E8. На самом деле Киллинг считал, что исключений шесть, но два оказались равнозначными алгебрами, описанными в разных выражениях. Размерности в исключительных алгебрах Ли равны 14, 56, 78, 133 и 248. Они по-прежнему несколько загадочны для ученых, хотя мы четко понимаем, почему они существуют.
Простые группы Ли
Из-за столь тесной связи между группами Ли и соответствующими им алгебрами классификация простых алгебр Ли ведет к классификации простых групп Ли. В частности, четыре семейства An, Bn, Cn и Dn являются алгебрами Ли для четырех классических семейств групп преобразований. Ими же являются, соответственно, группы всех линейных преобразований в (n + 1) – мерном пространстве, группы поворотов в (2n + 1) – мерном пространстве, симплектическая группа в пространстве с 2n измерениями, что особенно важно в классической и квантовой механике и оптике, и группа поворотов в 2n-мерном пространстве. Несколько заключительных штрихов к этой истории были добавлены позже, в частности введение Гарольдом Скоттом Макдональдом Коксетером и Евгением Дынкиным графического подхода к комбинаторному анализу системы корней, известного сейчас как диаграммы Коксетера – Дынкина.
Группы Ли важны для современной математики по многим причинам. Например, в механике многие системы обладают симметрией, и это позволяет найти решения для динамических уравнений. В основном именно симметрии образуют группы Ли. В математической физике изучение элементарных частиц во многом опирается на математический аппарат групп Ли, опять-таки благодаря определенным принципам симметрии. Исключительная группа Киллинга Е8 играет важную роль в теории суперструн – основополагающем направлении в поисках связей между квантовой механикой и общей теорией относительности. Сделанное Саймоном Дональдсоном в 1983 г. эпохальное открытие о том, что четырехмерное евклидово пространство обладает нестандартными дифференцируемыми структурами, открывает новый взгляд на группы всех поворотов Ли в четырехмерном пространстве. Теория групп Ли по-прежнему жизненно важна для всех отраслей математики.
Абстрактные группы
В «Эрлангенской программе» Клейна особый упор делается на то, что исследуемые группы состоят из преобразований, т. е. элементы группы действуют в некотором пространстве. И большая часть ранних работ по теории групп предполагает такую структуру. Но более поздние исследования потребовали нового уровня абстрагирования: сохранить свойства группы, но отказаться от понятия пространства. Группа состоит из математических объектов, которые могут быть объединены для получения аналогичных объектов, но они не обязательно должны быть преобразованиями.
Это могут быть числа. Два числа (целые, рациональные, действительные, комплексные) могут быть сложены, и результатом также станет число такого же вида. Числа образуют группу с помощью операции сложения. Но число – не преобразование. Несмотря даже на роль групп как преобразований, объединивших геометрии, от понятия связанного с ними пространства лучше отказаться, чтобы объединить теорию групп.
Одним из первых математиков, решившихся предложить такой шаг, стал Артур Кейли в трех своих статьях от 1849 и 1854 гг. Он говорил, что группа содержит набор операторов 1, a, b, c и т. д. Объединение ab двух любых операторов должно быть другим оператором; особый оператор 1 удовлетворяет условию 1a = a и a1 = a для всех операторов a; ассоциативный закон (ab)c = a(bc) должен сохраняться. Но его операторы по-прежнему опирались на что-то еще (множество переменных). Кроме того, он пропустил решающее условие: для любого a должно быть обратное a´, такое, что a´a = aa´ = 1. Так Кейли хотя и подобрался к призу, но промахнулся на волосок.
В 1858 г. Рихард Дедекинд позволил членам группы быть произвольными сущностями, а не только преобразованиями или операторами, однако включил в свое определение коммуникационный закон ab = ba. Эта идея отлично послужила для его цели – теории чисел, но оставляла в стороне самые любопытные группы в теории Галуа, не говоря о более широком математическом мире. Современная концепция абстрактной группы была предложена Вальтером фон Диком в 1882–1883 гг. Он допускал обратимость, но отрицал необходимость закона коммутативности. Полноценный аксиоматичный подход к группам появился позже, в 1902 г., благодаря Эдуарду Хантингтону, Элиакиму Муру (1902) и Леонарду Диксону (1905).
С абстрактной структурой группы отделились от конкретной интерпретации, и их теория стала стремительно развиваться. Ранние исследования по большей части касались частных случаев: ученые, заинтересовавшиеся примерами отдельных групп или каких-то особых их типов, старались выявить их общие черты. Необходимые в этой области основные понятия и методы появились на удивление быстро, и теперь эта тема процветает.
Теория чисел
Еще одним источником новейших алгебраических идей стала теория чисел. Начало ей положил Гаусс, представив ученым то, что сейчас называется гауссовыми целыми числами. Это были комплексные числа a + bi, где a и b целые числа. Сумма и произведение этих чисел имеют такой же вид. Гаусс открыл, что понятие простых чисел обобщается на гауссовы целые числа. Они простые, если не могут быть выражены как произведение других гауссовых целых чисел, за исключением тривиальных случаев. Разложение гауссовых целых чисел на простые множители уникально. Некоторые из простых чисел, например 3 и 7, остаются простыми, даже если выражены через гауссовы простые числа, другие – нет: например, 5 = (2 + i)(2 – i). Этот факт тесно связан с теоремой Ферма о простых числах и их представлении как суммы двух квадратов, причем гауссовы простые числа иллюстрируют эту теорему и родственные ей.
Если мы разделим одно гауссово целое число на другое, полученный результат окажется не обязательно гауссовым целым числом, но, по крайней мере, близким к нему: он будет иметь вид a + bi, где a и b – рациональные числа. Это и есть гауссовы числа. Используя более общий подход, ученые, занимающиеся теорией чисел, открыли, что происходит нечто одинаковое, если мы возьмем любой многочлен p(x) с целыми коэффициентами и затем рассмотрим все линейные комбинации a1x1 + … + anxn от его корней x1, …, xn. Положим, что a1, …, an – рациональные числа, тогда мы получаем систему комплексных чисел, которая замкнута относительно сложения, вычитания, умножения и деления; это значит, что, когда эти действия применяются к такому числу, в результате получается число подобного же рода. Такая система представляет собой