Укрощение бесконечности. История математики от первых чисел до теории хаоса — страница 45 из 66

Великая теорема Ферма

Применение алгебраических числовых полей к теории чисел стремительно развивалось во второй половине ХХ в., причем возникало всё больше связей с прочими областями математики, включая теорию Галуа и алгебраическую топологию. Кульминацией этой работы стало доказательство Великой теоремы Ферма почти через 350 лет после ее первого упоминания.

Идея, обеспечившая возможность решения этой задачи, пришла из прекрасной области, заключенной в самом сердце современных трудов по диофантовым уравнениям, – теории эллиптических кривых. Это те кривые, у которых полный квадрат равен кубическому многочлену, и они представляют ту область уравнений Диофанта, которая понятна математикам. Однако сам предмет не лишен своих нерешенных проблем. Самой значительной остается гипотеза Таниямы – Вейля, названная в честь Ютаки Таниямы и Андре Вейля. Она гласит, что любую эллиптическую кривую можно описать в терминах модулярных функций – обобщений тригонометрических функций, в частности изучавшихся Клейном.

ЧТО АБСТРАКТНАЯ АЛГЕБРА ДАЛА ИМ

В своем труде «Исследование законов мышления», опубликованном в 1854 г., Джордж Буль показал, что алгебра применима к логике, и в результате открыл то, что сейчас называется булевой алгеброй.

Я могу дать лишь набросок высказанных Булем идей. Самыми важными логическими операциями являются не, и, или. Если утверждение S истинно, то утверждение «не S» ложно, и наоборот. Утверждение «S и T» будет истинно тогда и только тогда, когда оба утверждения, S и T, истинны. Утверждение «S или T» истинно, когда истинны либо S, либо T, либо они оба одновременно. Буль обратил внимание на то, что если вместо Т мы поставим 1, а вместо S – 0, алгебра этих логических операций будет очень напоминать обычную, если мы примем, что 0 и 1 – целые числа по модулю 2; тогда 1 + 1 = 0 и – S по абсолютной величине равно S. Тогда «не S» есть 1 + S, «S и Т» есть ST и «S или T» есть S + T + ST. Сумма S + T соответствует исключающему или (xor на языке компьютерщиков). «S xor T» истинно при условии, что истинно либо T, либо S, но не оба одновременно. Буль открыл, что его курьезная алгебра логики полностью самосогласована, если вы запомните ее немного странные правила и будете использовать их систематически. Это был один из первых шагов в сторону формальной теории математической логики.

В начале 1980-х гг. Герхард Фрай открыл связь между Великой теоремой Ферма и эллиптическими кривыми. Предположим, что решение для уравнения Ферма существует; тогда вы можете построить эллиптическую кривую с очень необычными свойствами, такими, что даже само существование такой кривой покажется невероятным. В 1986 г. Кеннет Рибет развил эту идею, доказав, что если гипотеза Таниямы – Вейля верна, то кривая Фрая существовать не может. Получается, предположенное ранее решение теоремы Ферма тоже не может существовать, что доказывает Великую теорему Ферма. Этот подход основан на гипотезе Таниямы – Вейля и к тому же показывает, что Великая теорема Ферма – не просто исторический курьез. Напротив, она лежит в основе современной теории чисел.

Эндрю Уайлс с детства мечтал найти доказательство Великой теоремы Ферма, но, став профессионалом, решил, что это не более чем отдельная проблема – пусть нерешенная, но не такая уж и важная. Работа Рибета заставила его изменить мнение. В 1993 г. он заявил о доказательстве гипотезы Таниямы – Вейля для отдельного класса эллиптических кривых, достаточно общем, чтобы найти доказательство Великой теоремы Ферма. Но когда статья уже была готова к публикации, в ней обнаружился серьезный пробел. Уайлс был готов сдаться, когда «внезапно, неожиданно на меня снизошло это невероятное откровение… это было столь неописуемо прекрасно, столь элегантно и просто, и я оцепенел, не в силах поверить». При участии Ричарда Тейлора он пересмотрел свое доказательство и сумел исправить пробел. Его статья вышла в 1995 г.

В одном мы можем быть уверены: что бы ни подразумевал сам Ферма, заявляя, что у него есть доказательство его Великой теоремы, его подход был совершенно иным по сравнению с методами Уайлса. Нашел ли Ферма на самом деле простое и изящное доказательство, или он обманывал сам себя? Эту загадку, в отличие от самой теоремы, мы не разгадаем никогда.

Абстрактная математика

Развитие всё более абстрактного подхода в математике представляется естественным следствием роста разнообразия ее областей. Когда математика по большей части имела дело с числами, алгебраические символы служили не более чем простой заменой им. Но по мере развития математики росли и символы сами по себе, всё больше обретая самостоятельную жизнь. Смысл их становился всё менее важным по сравнению с правилами, по которым с ними можно было манипулировать. Но даже эти правила не были под запретом: традиционные законы арифметики, например коммутативный, далеко не всегда справлялись с новым контекстом.

И не только алгебра стала абстрактной. И анализу, и геометрии тоже пришлось сфокусироваться на более отвлеченных понятиях, причем по тем же причинам. Поворотным временем в изменении общего подхода стал период с середины XIX до середины XX в. Потом начался период консолидации, когда математики старались сбалансировать противоречия между требованиями абстрактного формализма и прикладной науки. Абстракция и обобщения шли рука об руку, но абстракция также способна и затенять значение математики. По крайней мере, больше не возникало споров о необходимости абстракции как таковой: подобные методы доказали свою важность в решении множества давних задач, таких как Великая теорема Ферма. И то, что еще вчера казалось не более чем отвлеченными играми разума, завтра могло запросто стать жизненно важной областью науки или источником хорошего дохода.

ЧТО АБСТРАКТНАЯ АЛГЕБРА ДАЕТ НАМ

Поля Галуа создали надежный фундамент для системы кодирования, которая широко используется в различных коммерческих предложениях, особенно для CD и DVD. Всякий раз, слушая музыку или смотря видео, вы используете абстрактную алгебру.

Эти методы получили название кодов Рида – Соломона, в честь Ирвинга Рида и Густава Соломона, открывших их в 1960 г. Эти коды с исправлением ошибок, основанные на многочленах, с коэффициентами в конечных полях, применяются при кодировании данных, таких как музыка или видеосигналы. Известно, что многочлен степени n однозначно определяется своими значениями в различных точках. Идея состоит в вычислении многочлена в более чем n точках. Если здесь нет ошибок, любое подмножество из n точек восстановит тот же самый многочлен. Если это не так, то, исходя из предположения, что количество ошибок не слишком велико, мы всё еще сможем вывести нужный многочлен.

На практике данные представлены в виде кодированных блоков с 2m – 1 m-байтных символов в каждом, где байт – двоичный символ: 0 или 1. Чаще всего выбирается значение m = 8, потому что многие старые компьютеры работают в байтах – последовательностях из восьми битов. Тогда число символов в блоке равно 255. Один обычный код Рида – Соломона содержит 223 байта закодированных данных в каждом 223-байтном блоке, и оставшиеся 32 байта отводятся на символы четности, в которых указано, должны ли определенные комбинации цифр в данных быть нечетными или четными. Такой код может исправлять до 16 ошибок в одном блоке.

Глава 15. Геометрия на резиновом листе

Количество переходит в качество

Все важные элементы евклидовой геометрии: прямые, углы, окружности, площади и т. д. – так или иначе связаны с измерением. Отрезок прямой имеет длину, угол – определенный размер, он может немного отличаться от прямого (90°), варьируя между 89 и 91°, окружности определяются с помощью их радиусов, площадь фигуры зависит от длины ее сторон. Скрытый элемент, благодаря которому работает геометрия Евклида в целом, – это длина, метрическая величина, которая остается неизменной при движениях и определяет евклидов эквивалент концепции движения – конгруэнтность.

Топология

Новые типы геометрии тоже оказались метрическими. В неевклидовой геометрии можно определять длину и угол, они просто имеют другие свойства, нежели длина и угол на евклидовой плоскости. С открытием проективной геометрии всё изменилось: проективные преобразования могут изменять длину, а также угол. Евклидова геометрия и два основных вида неевклидовой относительно жесткие. Проективная более гибкая, но даже здесь есть более тонкие инварианты, и в представлении Клейна это определяет геометрию как группу преобразований и соответствующих инвариантов.

На исходе XIX в. математики начали развивать еще более гибкую разновидность геометрии – столь гибкую, что она получила название «геометрия на резиновом листе». Нам более привычно иное наименование – топология. Это геометрия форм, которые можно исказить чрезвычайно запутанными способами. Прямые могут искривляться, сжиматься или растягиваться; окружности сжимают так, что они превращаются в треугольники или квадраты. Единственное, что имеет значение, – непрерывность. Трансформации, разрешенные в топологии, непременно должны быть непрерывными в смысле анализа. Грубо говоря, это значит, что если две точки изначально достаточно близки между собой, они и в итоге останутся близкими, – отсюда и образ резинового листа.

Здесь всё еще слышны отголоски привычного метрического образа мышления: «достаточно близкие» – метрическая концепция. Но к началу ХХ в. математики избавились и от них, и топологические преобразования обрели независимое существование. Это тут же повысило научный статус топологии, вплоть до того, что она заняла ведущую роль в математике, – хотя с самого начала производила впечатление очень странной и бессодержательной области. Если преобразования